325
je. x® (139724+4835%) — 2% 4835% 1397 5000x = 13972 (R - 50005)
je. .v®(25328834) — 2 X 4835 x 1397 X 5000 x = 13972 (R2 — 5000%)

o _ 3 X 4835 X 1897 < 5000 _ 1857* (R* — 5000%)
95328834 253985834

X

Convelf.mg 2 a5 “_ into a continued fraction we have

31_{: 'll+ ; = -145 80 that the equation could be written as -
>< 4 _ 1397* (R= — 5000*)

— 3 X 5000 7= 95328334

Here 50005X 4 s symbolized as i\dya 80 that ‘we ha.ve

* — 2 Adya x =

16 __5000* X 1397> | 1397° X 3438
995 4532383 9532683

( 6 18972 \ . 1397 X 3438
226 2532883/ 2532883

50002 X

16 1397*
ted to =2
225 532803 ° Approximated to o7 337

10T [3-{%]e)
and 129! A 9390

2532883
have

Here

is mpproxxmated to 910678 so that we

X = Adya + ,\/910573 —_ 39;.'38'; where s is the given.sum,

Since the positive sign of the radical is invalid because
‘Hsin § * R, so the negative sign is taken. .~ .- -



Verse 102. In a place where s = 5", the sum of
Hsin 3, S. 8., Taddbrti, Kujya and Agra is 6500 ; find
them 1ndlv1dually oh, mathematician, if thou ar adeph in
understanding the sphere and dealing with the latitudinal
triangles,

Verse 103. Answer to the problem above,

Assuming H sin § to be equal to 12s and computing
the various quantities cited; take their sum., Then by
rale of three * If for this sum got, the individual magni-
tudes are such and such what will they be for the given
sum '’ each oan be had.

Comm,. The cited magnitudes are respecbively Hsin g,
R Hsin R*H sin HsmBHsmd

Hsing ' Hsin g Hsin ¢’ Hsin?
Eﬁ%%a which are all prOportiogal to Hsin g, ¢ being

given through ‘s’. With this idea of proportionality af
the baok of his mind, Bhaskara sets this ingenious ques-
tion, and gives an easy way of solving it by assuming
H sin d to be 5 X 12 = 60, so that the others can be got
rationally.

With this H sin g, 8. 8, 55— 3438 x 60 = 156, Taddhrti

3438 X 6/13
3438 X 60 R a= YAV g
3438 X & X 3438 x 1§ VU MMR T 31918
X 60 _
3488 X 12/13 65

The sum of these is 475. So, by the rule of three men-
tioned above, Hsin § = 1200, 8. 8. = 8120, Taddhrti =
3380, Kujya = 500 and Agra = 1300.

Or alternatively given s = 6, & = 13 50 that Hsin ¢ =
4 = 3438 X 12
13



327

Hsin ¢ X 18
5 1
Hsin 6 X 18° Hsind X6 _ 4 Hsin 6 X 18
60 ’ 12 12 )

18,169 5,13
576 T2t 12
/60 + 166 + 160 + 95 + 65\ _ 475 ., _ 95
HB“‘B( 60 )“‘EI)'H“‘“ 12

Hsin 6 = 9500 .. Hsin é = 1200 trom which by substi-
tution the remaining magnitudes could be obtained.

the various magnitudes are H sin 9,

The sum of these is H sin & (1 +

Verse 104. If the sum of Agra, H sin 6 and Kujya be
2000 find them individually, oh ! mathematician if thou
be an adept in the geometry of the sphere and compu-
tation.

Comm. Here the quantities are respectively
R Hsin § . g Hsin® Hsin ¢
]E[cos?"Hmm%&n Hcos P

. . R Hsing
sum is H 8in 8(1 + Heos 9 Hoeos?

=HsinB (Hsinp + Hoos? + R)
Hcos g

go that their

Here also we are to presume s = 5 8o that the above

sum is H sin 6 (31; 13 + k) (by proportion of the first and

Hsin 6 (6 +12 +13)

12
$ Heind = 2000 .. Hsind =2800. Substituting this
value in the above formula, Agra

RH sin ¢ - 3488 x 800 X 13 - 10400 -
= cos? 3438 X 12 12

HsinéHsinP=800X5_4000
Hoos ¢ 12 ¢ 12

second latitudinal triangles) =

866-40 ;

Kujya =
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OG = Gnomon; OP = Shadow of the gnomen ;
PM = the .Bhujé.’drawn from the extremity of the shadow
P perpendioular on the East-west line ; OM = Koti of the
shadow extending along the Hast-west line. AB is the
Nalaka placed along the Chayakarpa PG. The eye is
placed at A and the planet @ is visible through the tube
of the Nalaka AB,

Verses 105, 106 and 107. The method of observing
through the instrument called Nalaka, the planetary
position.

On a horizontal plane mark a point and through it
draw the East-west line and also the North south; if the
planet is in the Bast mark off the computed Koti of the
shadow towards on the Hast-west line; if the planet is in
the Western hemisphere, mark this Koti towards the East.
From the extremity of the Koti mark the computed Bhuja
perpendicular to the East-west line and draw the computed
shadow from the point so as to form a right-angled
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triangle with the Bhunja and Koti. Extend a thread from
the point of intersection of the bhuja and shadow to meet
the gnomon’s top 80 as o form the Chayakarna or the
hypotenuse of the right-angled triangle of which the other
sides are the gnomon and the shadow. Along this thread
place the Nalaka such that the lower extremity of the
Nalaka coincides with the eye. Seeing through the Nalaka,
the planet is to be seen. I shall tell how the planet could
be seen in water as well.

Comm. The Nalaka is a simple tube formed generally
of bamboo. The purpose of this is to verify the correct-
ness of the computation of the shadow and its bhuja. If
the computation is wrong the planet will not be seen in
that direction. It might be asked how the shadow and
bhuja are pertinent with respect to a planet, whose shadow
cannot be observed as that of the Sun. True, but the
computation of the shadow and bhuja are done as will be
done with respect to the Sun, knowing the declination ete.
ag in the case of the Sun. Computation does not depend
on the observation of the actual shadow. Computing the
magnitudes of the Bhuja and Koti, the direstion of the
Chayakarna points to the planet in the sky.

Verse 108, Observing the planet through the Nalaka
in water.

Fig. 63

42
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Place the Sanku at the point of intersection of the
Bhuja and shadow and holding the Nalaka along the join
of the top of S'anku and the point, the planet could be seen
it a basin of water placed at the point.

Comm. Let P be the planet casting the shadow AC
of the gnomon AB, C the extremity of the shadow is the
point of intersection of the shadow and the Bhuja,
Though we have shown the gnomonjin the position AB,
it need not have been placed there in as much as we have
the computed magnitudes of the shadow, the Bhuja and
the Koti. Now we are directed to place the Sanku act-
ually at C the point of intersection of the shadow and the
Bhuja, Thus CD is the Sanku. Since CD=AB and
and both are vertical evidently As DBA and DCB

e N\ A
are congruent, Hence DCB = DAB. But DCB = zenith-
A\
distance of the planet and as such is equal to BAD (also

e ”~N
the zenith-distance of the planet) .. DAB = BAP,
Henoe if a tray of water is placed at A, the planet will be
visible as seen through DE, the Nalaka sinoe the angle

A\
DAB is the angle of incidence and BAP the angle of
reflection are equal.

Verse 109. The planet is to be shown to the king,
who has an eye of appreciation for the same, either direot-
ly (as shown in fig. 62) in the sky or through water as
shown in the-fig. 63, having finished the preliminaries
indicated.

Comm. Clear,

End of the Tripragnidhy2ya.



PARVASAMBHAVADHIKARA
Investigation into the occurence of an eclipse

Verses 1-2. Multiply the number of years that have
elapsed from the beginning of the Kaliyuga by twelve and
add the number of months elapsed from the beginning of
the luni-solar year. Let the result be ¥, Then 2dd

65 ‘to*. Let the result by y. Then the longi-

tude of what is called Sapata-Sirya or the longitude of the
Sun with respect to a node will be ¥ Ragis -

(29 +503) (1 + 135) . . . .
3 % 30 Ragis. If this longitude be less

than 14°, then a lunar eclipse is likely o occur.

Comm, The first operation indicated above in direct-
ing * to be added to@_"%_;r%v is intended to obtain the
lunations that have elapsed from the beginning of the
Kaliyuga. In this bebalf we are asked to multiply the
elapsed years by twelve to get the number of solar months.
Here there is one subtlety to be noticed. The years that
have elapsed are not entirely solar. In fact the years
reckoned according ftio the luni-solar system were all
originally luni-solar ; but according to the convention of
intercalary months, they were rendered solar upto the
point of the latest intercalation, for, solar months plus
intercalary months are equal to the elapsed lunations.
From the moment of the end of the latest intercalary
month, the subsequent years or year or fraction thereof
would be luni-golar only. Nonetheless, no difference will
be there in the compnted Adhikamasas in adding a few
lunar months to the solar and taking them all to be solar.
The maximum ervor committed in so doing will be of
the order of (no. of days in a solar month minus no.
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of days in a lunar month) multiplied b:g 36 X & X &
of an adhikamisa, assuming that an adhikamasa would
occur at the latest in 36 solar months. (In fact, an
adhikam3sa would occur on the average in 32% solar
months, but we have taken 36 roughly as the maximum
figure in as much as the occurence of the Adhikamaes
might be belated on account of the convention stipulated).
Thus the error would be 36 X 2 X &% X #% = &th of an
adhikamisa at the maximum, Hence, we are dirccted not
only to construe thab all the years elapsed to be solar bug
also the subsequent lunations of the current luni-solar year
also to be solar months, Thus getting the number of
elapsed months from the beginning of the Kaliyuga, the
computation of the Adhikamiasas is formulated as follows.
If in the course of 51840000 solar months of the Yuga
there be 1593300 Adhikamisas then during the elapsed
solar months *, what is the number of elapsed Adhika-

masas ¢ The result is
% X 1593300 _ x X 1593300

61840000 796650
651840000

796660
= 62 >4< ;1 . Since Bhaskara knows that thers will be two
Adhikamasas roughly in 65 sclar months, he performed the
above operation. This shows that for every 65 solar months
roughly there occur two Adhikamasas or more agourately
a little less than two Adhikamas. So, taking, in the first
instance 2/65 as the ratio of Adhikam3sas to the number
of solar months, Bhaskara tries to find as to what quantity
is to be subtracted from 2. That is found as follows. If
there be A adhikamasas in s solar months what will be the
number of Adhikam3sas in * solar months ? The result is

,_As_x‘ Again if there be two Adhikamasas roughly in 65

solar months, how many will be there in * solar monthg ?
The answer is%g-. But we have seen about that the
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i 2x . .
sccurate number should be = 4 ie. a little less than

2x . .
o The question is now to find the value of 2. 8o,
ax A x 2x Ax
equating == —2to—~ 4 ="_ — =" = <_2__A
&85 s 65 s ¥ 86 s

_ . ({2s—65A o
= x’( “*65?) . Substituting for 2 s — 65 A namely

2 X 51840000 — 65 X 1593300 = 115500

_ x X 115500 _ ¥ X2 X 57150 _ 2%, ' 1
85 X 51840000 65 X 51540000 65~ 51540000
T 57750

_2x . _2x_  2x
65 65 65 X 898

_ 2x . Ax
65 X 898 s
_2 x( 1 )a,s iven.
=65\ 898/ B
The procedure, adopted as above, is in a way a short
cut in Hindu Astronomy to obtaining a convenient con-
vergent to a continued fraction. Let us use the method
of continued fractions; the number of Adhikam3sas in

x golar months is éS- je. x X Afs =

x X 1593300 _ x X 5311 . 172800
51540000 172800 Converting =7y

into a continued fraction we have

1 11, 1 1 65 .
32 4 — 1+ Tera T E 18+ 4130 which —2—15 a convergent
245 .
but a good convergent ISEQ- As this good convergent

is unwieldy, Bhaskara used 2/65 and made amends for the
roughness introduced by adopting it. Wherever a con-
venient convergent is not available, an easy and rough
convergent is used and amends will be made for the rough-
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ness resulting as follows. Leh%be a fraction to iwhich

™ is g convergent having small numbers as numerator and
n

denominator, so bha,b%—is taken t0 be equal to %(1 + }l) ,

Thus% = %(1 + i) or Mn = Nm(l +%)

Mn — Nm = %@orﬂ -__N_m___. In the present

" Mn — Nm
cage M is the number of Adhikamasas, and N the number

of solar months. %if taken to be &%

_ — 2 X Solar months
65 X Adikamasas—2 X Solar months
which is indicated in the commentary by Bhaskara,

In this case 4

In this context, it may be mentioned that a Karapa-
grantha named Narasimha based upon BSiryasiddhanta
(A Karapagrantha is a manual according which the Hindu
calendar is computed with easy numbers without under-
going the laborious process indicated in the treatises called
Siddhantas like the present Siddhznts S'iromani. In
these Karanagranthas, instead of taking the beginning of
the Kalpa or Mahayuga or the Yuga, as the epoch, a recent
date ie. the date of the author of the Karapagrantha is
taken as the epoch, and processes using approximations
are adopted for the sake of ease. Naturally therefore these
Karapas (as they are also called) get easily obsolete
within the course of a few hnudreds of years so that a fresh
Karana is called for preparation, if the caleulations were
to accord with the Siddhantas which those Karanas pro-
fess to follow. In fact, the present Karana of Narasimha
written in 1333 S'aka year ie, in 1411 A.D. declares that
a previous Karana named Tithicakra reported to have
been written by one Mallikarjuna Suri grew obsolete and
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80, & fresh Karapa is being written to accord with the
original Surya Siddhanta, (Vide verses I, II of Narasimha)
“fafaas ag ouia afeewigraRon, swa agar afens fadngd
Az, MO fogEEs afelda g3q, ady wgead fmay
aicgeray ” This Karana takes 3/98 instead of 2/65 as a
convergent in computing the Adhikamasas. In this case

. . 11 1
324+ = —
the continued fraction becomes 32 + 1+ it iF" So that

the convergents are %2, & 8% 88  Taking 98/3 as a
convergent, let us see how 1!7 wa,q sought to make amends
for the roughness of the convergent. As per the Sarya-
siddhanta the number of Adhikamisas during the course
of 51840000 solar months of a Yuga are 1593336 as against
1693300 prescribed by Bhiskara. Hence putting

1593336
51840000 _ 38 (1 + )
66389 _ 3 X 2160000
1% 9160000 ~ 95 (1 + ) ~ 66389 % 98—3 X 3160000

= 248 very approximately. So Narasimha adopts for the

1 ) the formula 3/98

. . 2
hikam3 tead of ~.(1
Adhikamzsas instead o 65 508

Having added the Adhikam3sas so obtained to the
golar months we have the lunations that have elapsed
from the beginning of the Kaliyuga. Then the next prooe-
dure indicated is as follows. In an eclipse solar or lunar,
the celestial latitude of the Moon has to be less than a
particular limit for the occurence of an eclipse. Thus in
the case of a solar eclipse the celestial latitude of the Moon
must be less than 32', whereas in the case of a lunar
eclipse it is to be less than 86/. Of course, for a solar
eclipse to be possible anywhere on the earth, not for a
given place, the limit is far higher as given in texts of
modern astronomy namely pm+ 8 + m — ps where pn is
the horizontal parallax of the Moon, ps that of the
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énd sand m the angular semidiameters of the Sun and
the Moon. (This formnla we shall see later). This higher
limit comes to 88.5'. The limit of 56" for the occurence
of a lunar eclipse is the value of

pm -+ ps — 8 + m as we shall see later.

The latitude of 56/ of the Moon arises out of a longi-
tude of 12° of the Moon with respect to a node, whereas
the latitude of 32/ arises out of a longitude of 7° with
resyect to the node. Since at an eclipse solar or lunar,
the longitude of the Moon with respect to a node, is the
same as the longitude of the Sun with respect to the same
or opposite node, the latter must be 12° for the ooccurence
of a lunar eclipse. But as the difference between the
mean and true Suns is about 2°, the longitude is stipulated
as 14°, In other words, for the oecurence of a lunar
eclipse, the longitude of the Sun on the full-Moon day
with respect to the nearer node shall be less than 14°. To
compute this longitude of the Sun with respect to the
nearer node on a full-Moon day, we are given the subse-
quent procedure indicated in the verse. In 53433500000
lunations of the Kalpa, the sum of the sidereal revolutions
of the Sun and the Node {Rihu) (Sum because Rihu has
a retrograde motion) is equal to 455231168 which is equal
to 4556231168 X 12 = 54627734016 Ragis. Then in one
lunation what will be the increase of the longitude with
respect to the Node? The result is

54627734016 _ 1 Rasi - 3583302048“(___ 74652126
53433300000 5343330000 ] 11319375)

dividing by 48 both the numerator and denominator.
Taking the first two digits in the numerator and denomi-
nator of the fraction the fraction is approximately equal
to 8¢ or 2/3., Taking this as a convergent we make
amends for the roughness as follows.

74659126 _ 9(, , 1\ . ,_  2x111319375
111819876 8\ ' 4/ ' T 3X74652126—2X 111319376
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— 222688750
1317628
of the Sun’s longitude with respect to a node is

1 Rasi + 3 (1 + 169)

yuga, the longitude of the node was 6 Ragis—8°—13/ and
the arc moved by the Sun with respect to the node during
the course of half a lunation is 0—15—20, so that their sum
is 5 —18—33. Here we have added for half a lunation
because the context is a lunar eclipse and the beginning
of the Kaliyuga was a New Moon day. Also, at the begin-
ning of the Kali, the Mean Sun being at the zero-point
of the zodiac, the negative longitude of the node only is
the longitude of the Sun with respect to the node., Hence
we have to add the above longitude of 6 ~18 —33 to the
longitude obtained through the a.bove formulaﬁion I, which

means 168°—33/ is to be added bo (1 -+ )where x

= 169 approximately, Hence the inorease

I. In the beginning of the Kali-

169
is the elapsed number of luna.tions Ta,kmg 168°—33/ as

nearly equal to 168°—40/, (1 + = ) + 168%°

(1 + 169) + igﬁ an (1 * 169 = ( 169)

approximately = (2~ + 603) (1 + 1/169) as formulated.

169

)+ 1+

Thus for * lunations, hhe longitude of the Sun with respect

(g% + - 503) :
+ 4T (1 + 169) . If this

longitude falls short of 14° we could except a lunar eclipse,

to the node is x Ragis

Latter half of verse 8 and verses 4, 5. Particularity
with respect to a solar eclipse.

Ada balf a Ragi to the longitnde previously obtained ;
‘find out on which side the Sun lies, north or south ; com-
pute the longitude of the Sun from the number of days
' 43
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elapsed after the Samkramanpa day (ie. the day on which
the Sun hag left one Ragi and entered another); obtain
the hour-angle in n3dis of the Sun at the ending moment
of the Amavisya ie. ab the moment of New Moon ; add or
subtract one-fourth thereof in Rasis from the position of
the Sun according as the Sun is in the Western or Hastern
hemisphere; then finding the declination of that point
and from the sum or difference of the declination and
latitude of the place, obtain the zenith-distance of the
culminating point of the ecliptio ; taking that point to be
roughly the Vitribba ie. the point of the ecliptic which is
90° behind the Sun on the ecliptic, find one-sixth of the
zenith-distance ; taking the sum or difference of the result
and the longitude of the Sun with respect to the node (got
in the beginning by adding half a Ragi to his position at
full-Moon) if the result happens to fall short of 7°) then
wo could expeot a solar eclipse.

If there be no eclipse at the current New Moon, then
go on adding 1 Rigi—0°—40’—15" to the longitude of
the Sun with respect to the Node (which will be his longi-
tude for the moment of the next New Moon) and repeating
the procedure indicated, the occurence of an eclipse or
otherwise could be known, If ocourence be indicated then
compute the actual positions of the Sun, Moon and Rahu
and following the procedure to be indicated in the chapter
on solar eclipses, the moment of the occurence of the
eclipse and other relevant details could be computed,

Comm, Inthe oase of a lunar eclipse, the Manaik-
yardha ie. half the sum of the diamsters of the eclipsing
and eolipsed bodies (namely the cross-section of the Earth’s
shadow at the lunur orbit and the Moon) is 56’, This is
the maximum limit to the celestial latitude of the Moon
if an eslipse were to oceur, and this latituade will be there
if the longitude of the Moon with respect to the nearer node
is 12°. Since a lunar eclipse occurs at the moment of a full
Moon, the distance of the Sun then from the opposite node
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should be also 12° for the oceurence of an eclipse. Since
it is oustomary to check the occurence of an eclipse
through Sapatastrya ie. longitude of the Sun with respect
to the node (the prefix Sa is to signify that the sum of the
Sun’s longitude and that of the node should be taken, as
the longitude of a node is measured in the opposite dire-
otion from the zero-point of the ecliptic) it is stipulated
that the Sapatastrya should bs 12° for the ocourence of a
lunar eclipse. But, as the True Sun might differ from
the Mean by about 2°, and as we are concerned with the
True Sun only, the limit is increased by 2°, so that a lunar
eclipse may occur if the Sapatasirya happens to be less
than 14°, Thus there is no more complication with res-
pect to the occurence of a lanar eclipse than requiring the
longitude of the Sapatastrya to be less than 14° for the
occurence of a lunar eclipse. If this condition be satisfied,
there will be an eclipse and that will be visible at all
places, where there is night, since a body in shadow will
not be seen from any place whatsoever.

But, there is a complication with respect to the oacur-
ence of a solar eclipse namely that it is not a question of
the Sun entering a shadow. The Sun could never be
shadowed. A solar sclipse ooccurs when the dise. of the
Moon comes in between the Sun and an observer and
obstructs a vision of the Sun’s disec. The Moon being very
near us compared with the Sun, its coming in between the
Sun and an observer may well be compared with a cloud
obstructing the vision of the Sun. Just as, when a cloud
.obstructs the vision of the Sun for an observer, it sould
not do so with respect to another who is situated at a
distance, so also, if the Moon effects a solar eclipse for a
partioular place, it could not do so for all places, This is
said to be due to parallax or Lambana as it is called (Refer
fig. 64). It is so called because, when there is an eclipse
of the Sun for an imaginary observer af the centre C of
the Earth, the Moon intersecting in the line of sight to
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Fig. 64

the Sun, for an observer ‘O’ on the surface of the Earth,
the Moon is not in the line of sight namely OS but hangs
down that line (g% aXdfa wwaw = That phenomenon
by which the Moon hangs down the line of sight). Hence
it is not sufficient to say that the Sapatastirya has a
longitude of 7° to conclude the ocourence of a solar
eclipse for & place. If the Sapatasirya be less than 7°,
certainly there will be a solar eclipse for some place on
the earth but not for all places. 8o, to decide whether
there will- be a solar eclipse for a given place, we are
to take into account the phenomenon of parallax. Af
every New Moon, the longitudes of the Sun and the
Moon will be no doubt equal; yet the Moon may not
obstruct & vision of the Sun, not being situated in the
ecliptic plane, He may be above the ecliptic plane or
below it and if he be within 3%’ from the plane, a part of
the Moon's globe may hide a part of the Sun’s from the
vision of certain observers who are situated about the point
o' of fig. 64, But suppose an observer is at O, For him.
there is no eclipse ab all as could be seen from the figure,
As the observer moves away and away from O/ towards O,
the effect of parallax will be greater and greater in longi-
tude, whereas, as the observer moves away and away from
0/ towards O, (where O, is the geocentric pole of the cirele
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(c) shown in the figure) along the ocircle of intersection of

the Barth with a plane through CO’ perpendicular to the

plane of the paper, where O, is a point on the earth such
ray Y

that SCO=90° the effect of parallax will be greater- and
greater in latitude. In other words the parallax has both
an effect in longitude as well as in latitude. When it has
an effect in longitude only it is called Lambana, whereas,
when it has an effect in latitude, it is called Nati, (Thus the
translation of ‘parallax’ as Lambana alone is not fully
correet, though at times the parallax may have its com-
plete effect in longitude only or in latitude only). For the
observer who moves in the ecliptic plane only as the one
moving from O/ towards O, the parallax will have its entire
effect in longitude only and for the observer moving in the
perpendicular plane from O/ to O, menti®ned before, the
parallax will have its enfire effect in latitude only. For
observes other than the two above, it will have effect both
in longitude and latitude also. When parallax effects
longitude the fime of conjunction is preponed or post-
poned, whereas when it effeots latitude, the latitude of the
Moon appears to have inoreased or decreased. When if
increases, no eclipse oceurs and when it decreases an
eclipse does ocour. At O/, the latitude will be exactly what
has been computed; at the point of intersection O’ of the
join of the centres of the Sun and Moon with the surface
of the Earth, parallax nullifies the latitude and on the great
cirele O/ O” there will be parallax in latitude only effecting
the magnitute of the latitude.

It will be seen that for the point O/, the Sun and the
Moon are in therzenith, so that neither will suffer from
parallax, For the point O the Sun will be on the
horizon and the Moon being depressed below the horizon
though he is in geocentric conjunction the parallax in
longitude or lambana is maximum and the occurence of
the New Moon had already elapsed 4 nadis ago.
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it will be seen that at the points O, and Oy where O, is the
other geocentric pole of the circle (¢) drawn there cannot
be an eclipse, the latitude being incresaed (as per Hindu
astronomy) by 48/ — 467, 1In fact, there will be eclipse
for the places on either side of O” (the point of intersection
of the join of the centres of the Sun and Moon with the
Barth’s surface) to such a distance as will increase the
latitude to 82/ only. For the other places on O’ O” beyond
these points, the latitude of the Moon exceeds this limnif
and g0 there will be no eclipse. Further clarification of
Lambana and Nati will be given later.

The above analysis underlies our investigation for the
ocourence of a solar eclipse. Sapatastrya might be less
than 7°, but it does not mean that every place will enjoy
an eclipse. 8o, for the place concerned, we have to see
that, even after taking into account the parallax in
latitude ie. in Nati, still the latitude will be less than 32/,
To obtain this parallax in latifude, the method adopted is
to find it at the point called Vithribha, (nonagesimal)
ie, the point which is behind the Lagna the rising
point of the Heliptio by 90°; for, as we shall see in the
Chapter on Solar eclipses, the parallax in latitude at the
Vitribha will be equal to the parallax in latitude at any
point of the ecliptic. In other words, wherever be the Sun
and Moon on the ecliptic (Moon also being very near the
node may be taken roughly to lie on the ecliptic) to
compute the amount by which the latitude is increased, we
compute it for the Vitribha, and this will hold good for
the arbitrary position of the Moon, for, there also the
latitude will be increased by the same amount. The
procedure given in verse 4 is to locate the Vitribha from
the position of the Sun and to find its zenith-distance to
compute the Nati; or rather, it is to locate the culminating
‘point and taking it roughly to be Vitribha, to compute
the influence of Nati on the latitude or Sara. If it were
only to find the Vitribha, it could be computed from the
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lagna of the moment of New Moon, Computation of the
zenith-distanoce of the Vitribha is a little cumbrous, so
that, for brevity, it is sought to eompute the culminating
point, obtain its declination and thereby its zenith-distance
which could be taken to be the zenith-distance of the
Vitribha also, from which the Nati is caloulated.

We are directed to obtain first the Nata or the hour
angle of the Sun for the moment of New Moon. We know
on that particular New Moon day how long Amavasya
will last after Sun-rise ie. we know when the sctual
moment of New Moon ocours on that day. We also know
the duration of day time on that day so that subtracting
the time of occurence of the New Moon after Sun-rise
from half the duration of day, we obtain the hour angle of
the Sun (Nata) in nadis. Now the Moon’s longitude is
effected by parallax, the effect being depression of the
Moon. It is roughly estimated that the hour angle ex-
pressed in nadis is ipcreased by % of its value on account
of this. Strictly speaking the effect of parallax is far more
on the position of the Moon than on the Sun. But the
Hindu procedure apparently treats the Sun alone for
parallax, The reason is that at the moment of geocentrie
conjunction of the Sun and the Moon, when we consider
the combined effect of parallax on the Moon and the Sun
at once, for a given place, we may as well compute the
relative position of the Sun effected by parallax. Let the
hour-angle of the Sun in nadis be #z. Then effected hour-

: b C 1.
angle will be 2 (1 + 1) = Za: nadis. But each Ragi being

taken roughly to rise in 5 nadis, the hour-angle in Rasis
will be 5z/4 + 6 Ragis «/4. Hence we are directed to
divide the hour-angle of the Sun in nadis to divide by 4.
This x/4 being substracted from the longitude of the Sun,
we geti the longitude of the culminating point. Then we
are directed to obtain the declination of the culminating
point from the formula Hsin § = Hsin w x Hsin 1 + R,
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This declination of the culminating point being known,
and the latitude being known, its meridian zenith-distance
could be got. Take that to be roughly the zenith-distance
of the Vitribha. Then an approximate estimate of the
effect in latitude is obtained as follows. Let the zenith-
distance of the Vitribha be *, Then if we have for
Hsin z = R, the maximum effect of 48’ — 46" in the
latitude, what shall we have for H sin 45°? The result is

Hsin 46 X 48/ — 46" _ 2431 v — 84’ _ sq

3438 = 3238 X 48/ — 46 34 30",
Then again another approximate estimate is made as
follows. Let the Sapatastirya (Sapatasirya = longitude
of the Sun or what is the same of the Moon with respect
to the Node) be 4. Then for 4 = 15° we have a latitude
of 70’. That being so, for a variation of 34’ — 30" in the
latitude, what will be the corresponding variation in the
longitude 4 ?

The result is = 6—29 X ;_(5) 22087 =17° ;; which is
roughly one-sixth of 46°. Henoe if the zenith-distance of
the culminating point taken to be the Vitribha be 45°¢
the variation in the Sapita-sirya (= Sapata chandra)
will be one-sixth thereof. Hence we are asked to inorease
or decrease as the may be, the Sapita sirya by 1/8th.
If the resulting Sapatastirya be less than 7°. there may be
an eclipse, When the lunar orbit lies north of the ecliptie,
the culminating point of ecliptic being south of the zenith,
the latitude of the Moon is decreased by parallax, so that,
we have to decrease the Sapatasfirya; whereas when the
lunar orbit is then south of the ecliptic, the effect of
parallax is to inorease the latitude and consequently, we
have 0 increase the Sapatasirya. Or again when the
oulminating point of the ecliptic is north of the zenith and
the lunar orbit is north of the eocliptic, parallax appears
to increase 8o that we have to increase the Sapatastirya;

when. at that moment the lunar orbit is south of
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the ecliptio, parallax appears to decrease the latitude so
that we have to decrease the Sapitastrya.

The proportion that 70/ of latitude correspond to 15°

of Sapata-chandra is due to the formula :
H sin 16° X H sin ,
R n 4 _ Hsin 8. Using logarithms,

log sin B = 9°4130 + 8'8946 = 8'3076 s0 that

B =1°— 10/ = 70/, This proportion could be used
because the Moon is within 15° of the Node. Hence when
we are investigating the ocourence of a solar eclipse,
application of rule of three is not unjustified or crude.

Herein, Bhaskara assumed the zenith-distance of
the nonagesimal to be round about 46° and drew a
gonoclusion that the effect in the longitude on account of
parallax in latitude is one-sixth of the zenith-distance,
Instead if the zenith-distance be assumed to be z, the

J— " -
result would be 48— 43 r);)sm a X 15 = 8-21 sin z which
may be taken as a better approximation. If on the other
hand the modern value of 87 of the lunar parallax be

67sinz X 15 .
—70———-1251112

taken, the result would be

approximately which is a better value,

In this caloulation, it is beter to compute the zenith-
distance of the nonagesinal using modern methods instead
of assuming the nonagesimal to be on the meridian.
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LUNAR ECLIPSES

Verse 1. The ritualistic purpose served at the time
of an eclipse,

Scholars of Smrtis and parapas declare that prayer,
charity or offerings to gods made in fire at the moment of
an eclipse conduce to much spirituality, Hence I give
hereunder the methods of computing the moment of an
eclipse (lunar or solar) in as much as such a knowledge
apart from its religious importance, is also wrought with a
beautiful mathematical treatment,

Verse 2. The initial procedure to be adopted to
compute an eclipse.

To know the occurence of a solar eclipse, find the
exact moment of the New Moon, which is indicated by the
equality of longitudes of the Sun and the Moon, and to
know the occurence of a lunar eclipse compute the exact
moment of the full Moon which is indicated by the fact
that M =8 + 180° where M and 8 are the longitudes of
the Moon and the Sun, agreeing in degrees, minutes and
geconds, though differing in Rasis by six. Also compute
the longitude® of the Node (Rahu) for the moment as
directed.

Comm. Having ascertained the possibility for the
ocecurence of a solar eclipse, we are directed to compute
the positions of the Sun, the Moon and Rahu for the day
of the New Moon. The Sun and the Moon are to be
rectified for oorrections like Desantara, Bhujantara,
Udayantara etc. From the elongation of the Moon the
tithi is to be computed and the method of successive
approximations called Chalana Karma is to be used to
obtain the exach moment of conjunction. This process of
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Chilana is as follows. At first knowing the elongation of
the Moon at Sunrise, by rule of three, using the then daily
motions of the Sun and Moon, the moment of the
conjunction is to be computed. Again the positions of
the Sun and Moon are to be computed for that mdment
and also their daily motions are to be rectified for the
moment, With these rectified daily motions and with.the
then positions of the Sun and the Moon, again the
moment of conjunoction is to be computed., Repeating the
process till an invariable answer is reached, we have the
exacl momen$ of conjunction. For that momenf, the
position of the Rihu is also to be calculated. Similar
is the procedure for a lunar eclipse also. It iz to be
noted that the correction called Natakarmsa, which we
formerly identified to be the correction for ‘ Astronomical
Refraction’ is also prescribed here as partioularly
mentioned by Bhiagkara, in the commentary, (Vide verses
68, 69 Spagtadhikara).

Verse 3. The magnitndes of the orbits and the
orbital radii of the Sun and Moon.

The distances of the centres of the globes of the Sun
and the Moon from the centre of the Earth in yojanas are
respectively 689377 and 51566,

Comm. We saw in the Kakshadhyiya of the first
ohapter as to how these distances were estimated. Some
scholars pronounced these distances are parameters; but
as per the modern estimate of the Earth’s radius -as
compared with that of Bhaskara, (The method indicated
by him in the Bhuparidhimanadhyaya of chapter I, is
quite mathematical) a yojana equals five modern miles
and with this correspondence, the distance of the Moon
is very near the truth. So to say that the distances
given sbove are mere parameters is wrong; also if one
of the parameters gives a correct value of the quan-



tity in question, the other also should; but because
the latter does not, to call them parameters is merely
meaningless.

It is interssting to note that in the commentary under
this verse, Bhiskara says ‘‘ If for a circumference of 3927,
the diameter will be 1250, ...” This means that Bhaskara

takes 7 = %g = 3'1416 which compares very well with

the modern value 314169, The value of & adopted
by Bhaskara in this, seems to have been taken from Lalla-
oharya’s Sisyadhivrddhida, Chandragrabapadhikara verse
no. 3.

« qregATgEar 625 waafuey
grgfaswam Geg=aa”
Verse 4, Computation of what is called the ‘ Kala-
karna .

The radius vector is to bs computed even in the case
of the Equation of centre as we did in the case of S'ighra-
R? . .
phala. Ifitbe ‘K’, 35— will be what is Kalakarna
both in- the case of the Sun, as well as the Moon,

Comm., While obtaining the Equation of centre, the

r sin m
formula used was ; whel_'eas, strictly speaking, it

should have been as in the case of the S'ighraphala, after

effecting the so called ‘Karpanupata’ I% ginm, While

trying to answer why this Karnanupata was not done there
also, Brahmagupta gave such an answer as made Bhiskara
exclaim ¢ 7aY fafarst waaraass " ie. It is really curious
in this respect,’ Bhaskara was really a most rational
type of astronomer, and one will not fail to appreciate his
sense of rationality when he. declares that (1) ‘ sifema

foraess@ ITafmida wera: wAong”; and when he was
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unable to adduce a proof he declares (2) ‘ SymRuly
grEAr ’ meaning thereby (1) ‘ In this branoh of seience, we
reckon only such an authority which has a proof behind
it ie. which could be substantiated ' and (2) ‘ There is no

proof in this but accordance with observations alone
hag to be taken as a proof ',

Though in the case of formulating the equation of
centre Karpanupata was not stipulated to simplify matters,
as there was not much difference, the Equation of centre
being generally small. It is to answer such contexts as
this that Bhaskara said in the Goladhyaya

" ie, ‘If we in some particular
context do not mention certain things it should not be
condemned because in such contexts, (1) there is not
much difference or (2) no useful purpose is served to
a good extent or (3) it is too clear as does not require
to be mentioned (4) the procedure implies a lot of
cumbrous caloulations and the result is after all negli-
gible and (5) Mention will make the work on hand
too unwieldy and brevity which is the soul of wit is
to be sacrificed. In the present context this procedure
of ‘rectification of the Karna' is sought to improve
matters. Bhaskara’s words ¢ g TEET FOT YW AT FHON

1:° seem really to imply that in the formula

éH sin m for the equation of centre in the place of R,

we are oalled upon to substitute really K. Though we had
been in default for not doing so in the context of the
Equation of centre, there is no reason why we should not
make up the deficiency in this context. So, therefore,
this reotification of Karpa is stipulated here.
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The procedure originally called for a rectification .ia
that taking K to be R, we have to compute » and again
taking the resulting K to be R, we have to compute r and

80 on repeating the progess till an invariable value for K is
obtgined. This means that we should go on substituting

for 7, LRE . Instead of following this laborioug process

of °Asakrt-Karma’' ie, method of successive approxi-
mations, Bhaskara gives an alternative in the verse, whieh
is as follows.

Let K be the value of the Karpa, for a value » of ».
Since we are directed to make this K as R, ie, we have to
add R—K to K thus making it R, we add also R—K to R,
to keep the relative position of R and K to be almost the

same. In other words considering the fraction %, adding
R~K to both the numerator and denominator we have
R
2R-K
will be R; that being so for & Radius R what will be the
2

whieh means that for a radius 2 R —K, the Karna

Karna ? The result is a8 given,

R
2R—K

It will be noted that the above interpolative procedure
is adopted as a short cut technique o the otherwise
laborious process. The mathematical correctness of this
procedure will be seen from the following analysis,

The problem is to change the Mandaparidhi to a
radius K of the deferent by the formula (as indicated by

Bhiaskara in the course of the commentary) »/ = TBK
50 that §r = »* — » = CRE — = r(KR—R) (1) Nov; we

have K* = R’ + 7* 4+ 2 R r 003 m construing R and m as
constants we have to find § K for § » .



351

Differentiating 2K dK = 27 §» + 2R cos m J»

0K = g7 (r +KR 0o0s m) . But from fig. 65

(which is a portion of the episyclic figure)

ie,

m
A

v " M, = 180—m

o N

' N 0, = @ = Mandaphala
0‘ N
M, = m—@
Fig. 65

r=K cos m—@—R cos m so that R cos m==K as (m —@).
Substituting in the above,

BK___Sr X K cos m—@

K = dr cos m—@
But § r from (1) is ’LQK_R‘ZR_)
dK =" (KI:R) cos m—@Q. DBut from the tri-

angle of fig, 65, K = Rcos 9 + r cos m—@ so that
roos m—@ = K—Rcos . But § being small cos § may
be taken to be unity so that » cos m—@ = K—R. Again
gubstituting in the above

0K = (E—R)’ :(2) Now as per -the formulation of

R
Bhiaskara
K = R? — R? _ R - R
2R—K R+R-K 14+R~—K 1—(K<R)
R R
. _EK~R\!

1y ‘%‘I < 1, expanding binomially,
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= R(1+ 5B BB g gr 4 LR

~K + (K;R)ﬂ s K'—K = 3K = (K_._R_R_’f as found

sbove.

Note. Bhaskara, having formulated this, appeals to
¢ Dhulikarms’ ie. arithmetical computation, for convin-
cing those who may not be able to follow his logie. Here
one may note also the wrong directive given by the
Samgodhaka in the text. The proof furnished by us above
gives a mathematioal veracity to Bhaskara’s formulation.

Verse 5. To rectify the Yojanakarna or the spatial
radius Vector.

The above Kalakarna multiplied by the Karpa given
in Yojanas and divided by the Radius gives the rectified
Yojanakarna,

Comm. In the formula given above K = (-K;RRX
which is in units of spatial minutes (on the scale of R=23438).

where K’ is the rectified Kala-karpa, and y the

Ysjanakarna given in verse 3, gives the rectified Yojana-
karna.

Second half of verse 5, The spherical radii of the
Sun and the Moon.

The spherical diameters of the Sun and the Moon are
respectively 6522 and 480 Yojanas,

Comm. The word-‘ Bimba ' is used to connote the
spherical diameter. The diameter of Moon as given will
be -equal to 480xX5=2400 miles in modern terms which
is not far from truth, Once we accept that the method
indicated by us in the Kakshadhyaya of chapter I was that
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followed by tho ancient Hindu Astronomers 6o estimate
the distance of the Moon, the spherical radins the hori-
zontal parallax, the orbital radius pertaining to the Moon
could all be deduced and the magnitudes so deduced accord
with their average values in modern astronomy.+ The
magnitudes pertaining to the Sun however, should be
deemed ag parameters. :

_ (8—E) En

Ks
diameter, s = The Sun's diameter; Km =, Moon’s dis-
tance from the Earth’s centro; Ks = The Sun’s distance
from the Barth’s centre, and a = radius of the Barth’s
shadow cone at the lunar orbit.

Verse 6. e = 2a where ¢ = Harth's

Comm. In fig. 66, let OD be the radius of the Earth’s
shadow cone at the lunac orbit. Required to find the
magnitude of CD. Triangles DEF and ESG are similar

Fig. 66
C
Kea ol
& b J
, Fig. 67 .

45
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pie
3

Fig, 68

Fig. 70

where DF and EG are drawn parallel to VBA, the
common tangent.

EF_8aG }e-—a*is—-}a
DETES “ Em = K,
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where & = FB = CD required
— .{r '_K_’l‘. ) I H ¢
a=1% e~ &s (s — e)jL as formulated 2a

being what is called Rihu-Bimba or diameter of the
Earth’s shadow cone at the lunar orbit which is called
Ku-bha Vistrti in the verse (Ku = Earth ; Bha=Shadow ;
Vistgti = diameter).

Note (1) We shall prove that this formuls accords
with the modern formula given for the radins of the
shadow cone. Divide I throughout by 2 Km, so that

o s—¢)
K = ¢/%En —5x, I

A\ e
But from fig. 67, a/Km = sin E = E = angular
radius of the shadows cone expressed in radius. From fig. 68,

Pal

§—Ie§; = Horizontal parallax of the Moon ; 5-%3 =sin B
N\

= E = angular radius of the Sun expressed in radians
from fig. 69; and ¢/2Ks = (from fig. 70) Horizontal
parallax of the Sun. Thus Equation IT means P =P —
0 + P! III where @ = angular radius of the shadow ocone,
P = Horizontal parallax of the Moon ; P' = that of the
Sun and 6 = angular radius of the Sun.

Note (3) If we don’t divide I by 2 K, we have the
radius of the shadow-cone in Yojanas, substituting the
values of ¢ and s, Km and Ks.

Note (38) It is worth hearing Bhaskara in his
commentary under this verse. Observe the Sun’s disc
while rising on the day when his true motion is equal to
his mean, with a compass composed of two rods binged at
one end and ocarrying a protractor at the other. Woe get
the mean diameter of the Sun equal to 33’ - 817 - 33"/,
Similarly, observe the Moon's disc on & full-moon-day
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when his true motion equals the mean, It will e 32’ =
0" - g, o '

Note (4) Substituting the values of P, P* and ¢ in
III p- = 52/-42" + 8’57/ — 16/~16" = 40/-23" = Angular
radius of the shadow-cone at the lunar orbit which alumost
accords with the modern value 41/-49/,

Note (5) One may wonder as to how, taking wrong
values for s and Ks, such a correct value could be obtained
for P. In equation II, &, Km, ¢ are all near the truth so
that the terms -effected are s/K and ¢/Ks; but both s and
Ks being parameters s/Ks comes off alright, which is the
angular radius of the Sun’s disc which could be measured.
The only vitiating term is e¢/Ks whioh is the horizontal
parallax of the Sun which was overestimated unwittingly
by & wrong supposition as indicated in the Kakshadhyaya.
However ¢/Ks comes to be 3/~57" and this overestimate is
mitigated to some extent that the Harth has an atmos-
phere which boosts the angular radius of the shadow cone
by about 1’ and the remainder of the overestimate makes
amends for the smaller value of P taken,

Verse 7. To convert spatial measures into angular
measure, The diameters of the Sun, the Moon, and Rahu
in Yojanas multiplied by R = 3438/, and divided
respectively by Ks, Kin and K give their angular measures.

Comm. From fig. 69, X, — o E = E expressed
. : B .
in radians = 155 R 3;42%;(—15 which means that

the angular radius of the Sun is got by multiplying s/2
ie. the spherioal vadius of the Sun by R = 3438 and divid-

ing by Ks as mentioned, Similar is the case with respect
to the other two.

- "Note. The word Kalakarapa is used to signify ‘To
oonvert into angular measure.
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Verse 8. An alternative method of obtaining the
angular radii.

The daily motion of the Sun increased by one-tenth
of its value and halved, gives the angular diamaterof the
Sun. The Moon’s daily motion multiplied by 3 and
divided by 71, gives the angular diameter of the Moon.
Or the daily mosion of the Moon being decreased by 715
and divided by 25 and the resul being added to 29 gives
the angular diameter of the Moon.

Comm. This method gives in an easy way the true
angular radii. The formulae given are s’ = %s, (14+%);
3m, m, — 715

= 25 -+ 29.
dated as follows. The argument used is “* If the spherical
diameter of 6522 Yojanas corresponds o a spatial daily
motion of 118682 Yojanas, what angular diameter corres-
ponds to the angular daily motion s, ?”’. The proportion-
ality is olear and the result is

and m' =

This may be eluoi-

s X 6632 _ 26088 ige 36088 _
Tioseg ~ drass’ C°nTOMRB grggg e ‘nto @ continued

fraction, it is

1+ 1+ 4+ 1+ 1+ %
11/20 = £ (1+35). The formula follows.

. The penultimate convergent is

Similar calculation gives m/.

Note. Tho advantage of these formulae is that they
are not only easy but also adopting the true daily motion
wo have the true angular radii. This procedure was
adopted by Bhaskara from Brahmagupta. The latter, how-
ever, prescribes a nearer convergent namely 10/247 but

achually 111;—0 is the nearest convergent.
The next formula namely m/ = my =715 | g9 i

29
approximate. This may be elucidated as follows. Let the
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daily motion be 715 ; then as per the previous formula the
2145

i 3 o — _7_3= ,
angular diameter shonld be 7 X716 = 74 28 74 29

very approximately. The mean daily motion is 790 which
corresponds to 32/ of angular diameter. Taking advant-
age of this arithmetical correlation namely that the excess
of 3/ over 29/ corresponds to 75/ of daily motion. Bhaskara
gives the formula m’ ="L9;7———1—§+29. This formula
correctly holds good when m, = 740, for, equating

737.‘2 =7 ‘;5715 + 29 = g'ngo ,x will be equal to 740,
For other values between 715 and above it holds very
approximately. Thus, when m, = 715, m’ = 28 1% ie, 29
when m, = 740, m' = 30, when m, = 765, m’ = 81 %
(error #5) when m, = 790, m' = 32 5 (error 5%) and so on.

Verse 9. An alternative method of finding the
angular diameter of the shadow cone.

2P =2/16 m; —5/12 s, where m, and s, are the daily
motions of the Moon and the Sun respectively.

Comm. In the previous verse, we had formulae to
compute the diameters of the discs of the Sun and Moon,
knowing their daily motions. Since in practice we have
these daily motions computed for every day, so the compu-
tation based upon those daily motions conduces to ease in
the matter of caloulation. Now in this verse, the radius
of the shadow cone is also calculated in terms of the daily
motions of the Sun and the Moon, which is more an
ingenious device adopted in practice. The elucidation of the
formula depends on the following technique as conaeived
by the Hindu astronomers. In as much as the Sun’s
sphere is far bigger than that of the Earth, the shadow of
the Earth assumes the form of & cone. From a knowledge
of the deorease in the diameter, as we prooceed from the
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Bun to the Earth and a knowledge of the Sun’s distanoe,
we can compute similar deorease as we proceed from the
Earth to the lunar orbit knowing the distance of the
Moon. Such a decrease measured in Yojanas is termed by
Bhaskara as ‘stqma@ysads’ ie. Yojanas of decrease in
diameter. It was this concept that led to the formulation

of 2a in Yojanas in the form 2 = ¢ — (’3—_—];1;11—”’— of verse
6 and is indeed based upon the similarity of triangles as
proved by us in that context. Dividing the above equation
by 2 Km, we have
= _¢ _ 1(=¢
a./ K 2 Em 3 Ks I

Dividing a, ¢ and (s—e) thus by the distances K and Ks is
termed ‘Kali-Karapa’ ie. converting spatial distance
into angular measure, Thus dividing a by Kn is con-
verting the radius of the shadow cone into angular measure
at the lunar orbit; dividing 4e¢ by Km is estimabing the
angular measure of the earth’s radius as seen from the
Moon’s distance or what is the same the horizontal parallax
of the Moon, whereas dividing 3s by Ks is getting the
angular radius of the Sun’s diso as seen from the Earth
and dividing %e by Ks is getting the angular radius of the
Earth’s disc as seen from the Sun or what is the same the
horizontal parallax of the Sun.

Equation I which gives a@/Kn the angular radius of

the shadow cone, may also beginterpreted as follows, —Q%—

) m

== Horizontal parallax of the Moon as mentioned above
”\

which is equal to the angle (fig. 66) ECB, for, ¢ =~ EB;

N\ -~
Km = BEC so that ¢/2Km = EB/EC = sin ECB = ECB
expressed in radian measure. Also Do

y—e _ SA—GA _ 86 _ . <hg — SBG = BV
— =88 " §E sin SEG = SEG = EVR
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(alternate angle) = Semivertical angle of tho shadow aone

N e
(say 0). Now EaB — BEVB = CED = angular measure
of OD ie. the angular radius of the shadow cone (expressed
in radian measure).

ting te/Km into angular measure, tl_Je propor-
tion 01;2:1’6]{)57 %%ﬁékara is “If by the dail)f spah}al motion
of 118693 Yojanas of the Moon, we have its daily ’x,notnon
in arc, what shall we have for e = 1581 YO]aD.B.S-? The
result is 1681/11859% m,. Converting the coefficient into

i 1 l 1 1 CELEEN)
a oontinued fraction we have,l—_*—_ iz The
penultimate convergent is #. Henoce ¢/Em = o5 My

Oonverhing%(%gf) into arc, the proportion used is
L)

“If by the daily spatial motion of 118569% Yojanas, we have
the daily motion of s, what shall we have for s—e =
. " . 4941
6622—1681 = 4941 Yojanas?’' The result is 11850} *
Converting the ooefficient into a continued fraotion, we
have 2—1— il: 2-1_; 1%6 . The penultimate convergent is 5.

Henoe, the result is &5 s,

Note (1) It might be asked whether the Hindu
‘astronomers used the theory of continued fractions. The
answer is, they did though they did not write the con-
tinued form in the form we do now, They arranged the
successive quotients in a vertical line and oalled the
column as a ‘ Valli’ or ‘creeper’. One may refer to the

chapter in Bhaskara’s Bijagamita on ‘Kuttaka’ in this
context,

Note (2) The formula derived sbove to obtain tne
Rahu-Bimba or diameter of the shadow-cone at the lunar
orbit, is one which could be convéniently used in practice,
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for, as mentioned before, the daily motions of the Moon
and the Sun are ready computed for every day. Also the
advantage in using this formula is that besides the fact
that we need to deal only with small quantities instead of
the big numbers of Yojanas, the true value for the day of
eclipse is got by using the true daily motions. Using the
mean daily motions, however, we have for the mean
diameter, % m, — 5 8, = & X T90/-85" — & X Y-8/
= 105 % — 25§ = 81 very approximately.

s—e
Ks
the values of s and Ks are parameters s/Ks is got alright,

Note (3) In obtaining a convergent for , since

Wherel—z—sis more exaggerated as the value of the hori-

zontal solar parallax, By this term the result is increased
to an extent of 3/ out of which 1/ is mitigated by the fact
that we have to take the earth’s atmosphere also into
consideration, for, that will inorease the radius of the
shadow to #th of its value.

Note (4) The last line of verse (9) is “ The earth’s
shadow eclipses the Moon, and the Moon eclipses the
Sun ., This statement is deliberately made by Bhaskara
to remove the misconception in the minds of lay men who
wrongly believe the usage of the words Tigmsa and
#gmer used in the calendars even today and the
mythological puranic story associated with Rahu and K&tu
depicting that a serpent devours the Sun and the Moon.
In fact the shadow of the earth which eclipses the Moon
and the shadow of the Moon which hovers on the earth
at the time of a solar eclipse do resemble the tail of a
gerpent.

Verse 10, To obtain the latitude of the Moon.

Viksepa or Sara as it is also called ie. the latitude §
of the Moon is obtained by the formula

- Hsin 4 X 270 .1 4 it will have the same direction as

4R
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the Moon with respect to the ecliptic where 4 is the longi-
tude of the Moon with respect to the nearer node and
270’ or 43° is taken to be the inclination of the lunar
orbit“to the ecliptic or what is the same, the maximum
latitude of the Moon.

Comm. The formuls is evident and similar to that
for calculating the declination of the Sun. Thus

Hsin Hsin2 X H ¥ But since B is small

R
1 /
and also 41°, we can take 8 = Hm__%&y_o_
The argument used by Bhaskara, however, is ‘ If by
a H sin 2 equal to R, we bave the maximum latitude of
270/, what shall we have for Hsin 4?° The result is as
given.

Note. The modern value for ¢ the inclination of the
lunar orbit to the ecliptic is given to vary between 4°-58/

Verse 11, The definition of the magnitude of a lunar
eclipse.

Sthagita or the magnitude of an eolipse is defined
as P+r+ﬁ where P and » are respectively the radii of
the eclipsing and eclipsed bodies and /3 is the latitude of
the Moon. If the Sthagita is greater than 2r, then the
eclipse is total,
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Comm, In figure 71, the feclipsing body is just con-
tacting the eclipsed body. Taking the case of a lunar
eclipse, the latitude then of the Moon is evidently P+~
ie. B=P+r holds good at the moment of first con-
taot. (C) is the cross-section of the shadow-cone at the

lunar orbit and (M) is the Moon.
T (fig. 72),CB+AM—-CM=CB-+AB+
BM—~CM=AB-+(CB+BM)—-CM =

P i AB+CM—-CM=AB
el . P4r—B=AB=Sthagita. Thus
/r Sl Sthagita gives the portion of the
f diameter of the eclipsed body which
¢ is shadowed. The eclipsed body is
\\ termed the Chidya, the eclipsing
. body as the Chadaka and P--r as
- the Manaikya-ardha ie. half the
sum ofthe diameters of the eclipsing

and eclipsed bodies.

92

When the Sthagita exceeds the diameter of the
esolipsed body the eolipse is evidenfly total ie., when

Verse 12. Duration of the eclipse and duration of
its totality.

Bthiti-Khanda Duration of
the eclipse

Marda-Khanda = ~(r—7)*— 3° X 60 = % Duration of

my—$, totality
where P is the radius of the shadow-cone, ¢ the radius of
the Moon’s dise, A its latitude taken to be constant during
the eclipse, m, and s, the daily motions of the Moon and
Sun respectively.

Comm. (1) The time between the moment of first
oontact and the middle of the eolipse or the moment of
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opposition or conjunction as the case may be is- oalled
Sparsa-Sthiti- Khanda.

(2) The time between the middle of the eclipse and
the moment of last contact is called the Moksa-Sthiti-
Khanda.

(8) The time between the commencement of total
eclipse,and the middle of the eclipse is called the Sammsi-
lana- Marda-Khanda,

(4) The time hebﬁéen the middle of the eclipse and
the end of total eolipse is called Unmilana-Marda-Khanda.

The suffix Khanda meaning ‘half’ is generally omit-
ted while refering to these phases. In the above verse
we are given formulae for- Sthiti-Khanda and Marda-
Khanda only without specifying whether they pertain to
Sparga or Moksa. Though the same formulae serve
for both the Sparya phase as well as the Moksa phase
under the supposition that [ does not vary, it will be
noted that the Sparsa-Sthiti-Khanda will not be equal to
Moksha-Sthiti-Khanda and that the Sparga-Manda-
Khanda will not be equal to the Moksha-Marda Khanda
in as much as B changes from moment to moment,. .

In fig. 78, let C, be the position of the eclipsing body
at the moment of first contact and C, its position at the
moment of last contact., In tho figure is shown only one
position of the Moon’s dise signifying that we may con-
sider the motion.of the eclipsing body keeping the eclipsed
body fixed (or what is the same relative to the position of
the eclipsed body). It is evident from the fig. that C,M =
C;M = P+ so that C,M C, is an Isosceles triangle. Let
MN be the Lar dropped from M on C, C,.. C, G, is the
eoliptic because the centrs of the shadow will be moving
along the ecliptie, for, in fig. 66, SE the ecliptic passes
through D the cenfre of the oross-section of the shadow-
cone, as well as through the vertex V of the -shadow-cone.
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Fig. 73

MN is therefore the latitude of the Moon., Since the lati-
tude is not the same at the moment of first contact and
that of the last contact, the figure drawn does not
represent the true figure but only a-figure drawn on the
supposition that 3 remains the same and C; Moves relative
to M. From the figure O:N® = (P4¢)* — ¥ =

. The Sthiti-Khanda defined in this verse is the time
taken by C. to reach the position N ie. the position at
the moment of opposition, and again from the position N
to the position Cp. The velocity of C, relative to M is
no other than the excess of the velosity of, the Moon over
that of the Sun. (The velocity of the Harth is the relative
velocity of the Sun with respect;to the Harth and this is
equal to the velocity of the shadow moving along the
ecliptic). - So, the time taken by C, to reach the position
80 X WP + 7*
my—.

Similarly the time taken by the centre of the shadow from
N to C, ie. from-the point of opposition o the moment

of N relative to the Moon is equal to
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of last contact has also the same formula where in each
oase B is the latitude at the moment of opposition. The
path taken by the centre of the shadow is oalled ‘ smigwaTd’
ie. the path of the eclipsing body, The actual case when

both,C and M are both moving and when 3 is considered
as a non-changing quantity is shown in fig. 74. In this

B, \ 8
" ) ‘\\y ) ”
Fig. 74

case, three positions are shown, (1) that at the first con-
tach (2) that at opposition and (3) that at last contact,
where C,, My, Cy, M; and Cg, My give the positions of the
centre of the shadow and that of the Moon's dise respe-
otively, both the centres being shown as moving. Since
the Moon moves faster than C and as such overtakes C,
the path of M from M. M; which synchronizes with the
path of C from C, to G, is shown to be longer. But, one
may wonder, how C, N, and C; N, represent the Sparsa-
8thiti-Khanda and Moksa-Sthiti-Khanda respectively,
The distance overtaken by M with respect to C from the
point of first contact to the point ef opposition is M, M, —
0. G, = C: Ni.. Hence we compute C, N, by the formula
0, N?= (P+r)*— B’ Similarly from the point of
opposition o the point of last contact M overtakes C by
the distance My M; — C; Co=C, N, =

Fig. 75 shows the situation when f changes as is the
wetuality., When the opposition takes -place after the
Moon crosses the node, then B> B: > B:, whereas if
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the opposition precedes the Moon’s position ab the node
B:s < Bu< B Also, when B changes, M, M; does not
exceed C, C, exactly by Ci:Ni 8o, on both the counts,
the formulae, given in verse 12 are approximate. What
is done in practice is that J3 is computed for the moment
of opposition and estimating the Sparsa-Sthiti-Khanda by
the formula given above, and subtracting it from the time
of opposition the moment of first contact is got. Then /6 is
computed for that time and again the formula is applied
to get the Sparsa-Ssthiti-Khanda. Repeating the process,
we rectify the Sparsa-Sthiti-EKhanda. Even then, we do
not have the actual value of the Sparga-Sthiti-Kbanda,
beocause M, M, does not exceed C: C; exactly by C: Na.

A more correct procedure would be to compute the
time between the moment of first contact and the moment
of opposition and by that time, to compute the_length of

M, M, and take -in the place of m/ and use the
2

formula of verse 12, » This nicety, however, need not be
attended to with respect to the duration of totality, for,
it does not make much difference, K

Another way of obtaining a better value for T, the
Sparga-Sthiti-Khanda is to take average values for B, and
B,, m, and my, 8, and s, where m, and mj are the values of
the Moon's daily motion and s and & are those of
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Sun's at the point of first contact and the moment of con-
junction respectively.

We may also use ealeulus to obtain T, the variation
in time for a variation of 8,8 in B and a variation of
dm: in m. ignoring the small variation in s., as follows,

1 = BFr)—p

mi1—8,
QT 8T — (ml“—sl) X "‘Qﬂ 8ﬂ—P+'r"—ﬂg sz
(7"'1_'51)2
3T = — 1385 _ O (P'I'Tg"‘ﬂg)

T (ml—-s;) - 1 (mx—‘?:)ﬂ
The first term on the Right hand side gives the variation
for 83 and the second for dm,,

Fig. 76 shows the case of totality.

Fig. 76

M,M;=N,C,+C,C, .. TheMoon has to over-
take C from the moment of the beginning of totality to
the moment of opposition by the distance C, N: with a
relative velooity of m,—s,. Hence the time of Sammilana-
Marda-Khanda is equal o

NO,M, =4 X 60 - NR=r—p6X0
M1— 81 m,— 81
as given, taking 4 to be constant. Similarly the Un-
milana-Marda-Khanda from the position (M, C,) to the
position (M, Cy) will also be the same, taking # to be
constant.
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Rectification of this time, when g is considered as
varying will proceed on the same lines as hefore.

Verse 13. Rectification of the times of Sparsa-Sthiti-
Khanda and Moksha-Sthiti-Khanda.

From the position of the Moon and that of the Node
obtained for the moment of opposition, have to be com-
puted their positions for the moment of first contact and
TXwv

60

is to be subtracted and added respectively to the positions
at the moment of opposition of the Moon and Node, where
T is the time of the Sparsa-Sthiti-Khanda, and v the daily
motion (of the Moon or the Node as the case may be),
From these positions g has to be computed for the moment
of first contact and that of last contact, and from this g
the time of Bparsa-Sthiti-Khanda and Moksha-Sthiti-
Khanda have t0 be rectified by the method of successive
approximation.

thoge for the moment of last contact. For this,

Comm, From fig, 75, C, N, and C, N; are the dist-
ances gained by the Moon over the centre of the shadow
so that to get their correct values 8, and g, are to be used
and not 8. Henoe g, and g, are to be computed using T
the time of Sparsga-Sthiti-Khanda and that of the Mgksha-
Sthiti- Khanda which are taken to be equal in the firat
instance, Since T is the time taken as a first approxi-
mation, 8,, 8, are also approximate in the first instance.
From these g,, 8, T is to be rectified and in this rectifi-
cation, we have T, and T, differing, as the times of Sparsa-
Sthiti-Khanda and Moksha-Sthiti Khanda. From these
rectified times again 8,, 8, are further to be rectified and
from them again T,, T, are to be further rectified. This
procedure is to be continued #$ill constant values are
obtained for T, and T,.

47



370

Note, T, will be less than or greater than T. accord-
ing as As 2 B,

Verse 14. Reotification of the Sammilana-Marda-
Khanda and Unmilana-Marda-Khanda,

Proceeding on the same lines as above and obtaining
8, and g, the rectified latitudes of the Moon for the
moments of the commencement and end of totality of the
eclipse, the Sammilana-Marda-Khanda and Unmilana-
Marda-Khanda, T; and T, are to be rectified.

Note. We have the formula sin 8 = sin 1sin ¢ 80
that by differentiating. we have cos 858 = cos 151 X sin ¢
_sinio084 A2
o8 cos 8

This formula gives in one stroke the reotified latitudes
of the Moon at the respective moments from which the
respeotive rectified times could be got.

Verse 16 and the first half of verse 16, The definition
of Bhuja and the method of finding it at an intermediate
point of time. ‘

The word ‘Ista’ is used to connote ‘At any given
time’, The word °Spargika-Ista’ means ‘At a given
time after the moment of first contact’; similarly the
word ‘ Mauksika Ista’' means ‘At & given time before
the moment of last contact’. (T—£) (m:—s,) where
(mi—s.) is in degrees (m, and s, of course being expressed
in minutes); T stands for the Sthiti-Khanda (Sparsika
or Mauksika) and ¢ stands for the Ista (Spargika or
Maukgika) gives the Bhuja. Similarly with respect to
obtaining the Marda-Bhuja. (The former is called Sthiti-
Bhuja).

Comm. In _ﬁg. 77, let C and M be the éenbres of the
Rahu (oross-section of the shadow-cone at the lunar orbit)
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Fig. 77

and the Moon respectively; let MN be the perpendiocular
from M on the Grihaka-marga or the path of the eclipsing
body (ie. the ecliptic). Then CN is called the Bhuja at
the time,

At the moment of first contact, the value of CN is
T4 where § is the latitude of the Moon at that
moment, At any subsequent moment, from fig, 77, CN
ig equal to ~(P+7—AB)'—p* Where§ is the latitude at
the subsequent moment and AB the portion of the radius
of the eclipsed body shaded. Hence we could obtain the
Bhuja at any subsequent moment, by computing the
latitude at that moment and the value of AB. But AB
eould be computed only by knowledge of CN and 8. Hence
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the necsssity for knowing the value of CN at any subse-
quent moment arises. p, of coarse, could be computed,
knowing the hourly variation of 8, which in its turn could
be known, by a knowledge of the hourly variation in 4, the
longitude of the Sapatachandra.

The magnitude of CN is calculated by the rule of
three ‘‘ If by the Sparsa-Sthiti-Khanda we have initially
the initial value of CN, what shall we have for (T —¢)?"

(T—t) X CN
T

The result is where CN is the initial value

of CN and T the Sparsa-Sthiti-Khanda. Substituting the
values of CN and T from verse 12, where

N(R+r)—p* X 60

ON = J(R+r)—p*and T =

n,—~— 81
wo have the required Bhuja as
T—¢) (NRL,2 — — _
( ) R+ £) X (m,—s,) = (T—t) {mi—s,} minutes
60 (VR-+r")—p?) 60

= (T —¢) (m1—s:) degrees as given.

Similarly we could find the Bhuja with respeot to
‘totality ’ ie. the ‘ Marda-Bhuja ' as it is called.

Note. One might mistake M, M, of fig. 74 (M: per-
taining o a subsequent moment) to be the Bhuja defined
above, which is the join of the centre of the eclipsing body
and the foot of the latitude at the middle of the ealipse.
That is why Bhaskara uses the word ‘ Madhya-S'aragra-
Chihna’ in the commentary, meaning thereby not the
foot of the actual latitude at the middle of the eclipse but
only the point N of fig. 77 which ‘signifies’ it.

Second half of verse 16 and first half of verse 17.

Taking the latitude of the Moon at a given time as
Ksti, and Bhuja as the Bhuja of the moment defined
above, we have the Karpa of the moment as JBhuja.’—{—ﬂ“ ;

R+r—Karna gives the Grasa at tho moment.
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Comm. The word ‘Grasa’ at the moment stands
for AB of fig. 77, Karpa for OM, where ON is the Bhuja
and MN is the Koti. The ‘Grasa’ at the moment of
opposition has the special name Sthagita.

Second half of verse 17 and verse 18.

To obtain the time after the moment of first contacs,
knowing ‘ Grasa’ at the moment.

 (lvman)e_ b

T— A/(P-l"r Grasa) ﬁ —_ t; this (tr
’m‘ -8,

by obtaining the g of the moment and again finding ¢ and

repeating the process till an invariable magnitude is got.

is to be reotified

Comm. This is the converse of finding the Grasa
given the time. The method of rectification is also
evident. In the above equation considering g and ¢ as
variables, and differenting,

5t = 1 X —psp ____ —Bsb
2 (ma—s.) N(P+r—g)*—8 (T—t) (m,—s.)*

Knowing 88, &t could be got without taking recourse
to the method of suceessive approximations.

Verse 19. CQCertain definitions.

The ‘Middle of the eclipse’ (or striotly speaking the
moment when the portion eclipsed is a maximum) ocouts
at the moment of opposition. Sparsa or Pragraha is at
the moment of first contact and Moksa is at the moment
of last contact, separated from the moment of the middle
of the eclipse by times equal to Sparsa-Sthiti-Khanda and
Moksa-Sthiti-Khanda respectively before and after.
Similarly Sammilana and Unmilana or the moment of
the commenoement of totality and the end thereof ocour
before and after the moment of ‘ the middle of the eclipse’
by times equal to Sammilana-Marda-Khanda and Un-
milana- Marda.Khanda respectively.
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Verse 20. To get what is called the Valana.

The bour-angle of the eolipsed body expressed in
nadis, multiplied by 90 and divided by half the duration
of night (if it be lunar eclipse) or half the duration of day
(if it be solar) as the case may be will give the degrees of
an angle, whose H sine being multiplied by the H sine of
the latitude and divided by (H cos &, (where 9 is the decli-
nation of the eclipsed body), gives the H sine of what is
oalled Aksavalana which is north when the hour angle
is east, and south otherwise.

Comm. This subject of Valana requires a detailed
treatment as is given in the Goladhyaya by Bhaskara.
Here only a praoctical formula is given o proceed with
the computation. For an understanding of this formula
we have to necessarily draw upon the ftreatment in
Goladhyﬁya

The word Valana’ means ¢ defleotion”’. The problem
_posed is at what point of the disc of the eclipsed body does
the eclipse begin and at what points it ends. Since an
observer sees the disc of the eolipsed body on the back-
ground of the spherical suriace of the sky, the specification
of the point of first contact must neeessarily be made with
respect to-east, west, north and south. These directions
could be speocified thh respect great circles drawn second-
ary to the prime-vertical. But the Earth's shadow moves
along-'the eoliptic and the Moon is also very nearly
moving on the ecliptic at the moment of an eclipse. Thus
“Valana’ should give the angle between the ecliptio and
the prime-vertical; rather it should be described by two
diameters of the Moon’s diso, one a secondary to the
prime-vertioal and one a secondary to the ecliptic. In
other words we have to get the angle subtended at the
centre of the Moon’s disa between those diameters.
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This angle between the two diameters mentioned, 18,
FaN
tor convenience divided into two parts namely KMP and

N
PMN, where K, P, and N are the poles of the eo'lipfsic,
celestial equator and the prime-vertical and M is the centre

A
of the Moon’s disc. KMP is called Ayana Valana, so
oalled because it depends upon the obliquity of the ecliptic
to the Equator (9qA%Y: 9@« «rad g=aw, ie. the deflection due
to the deflection of the solsticial points from the equator)

N\
whereas the angle PMN is called Aksa Valana ie, defle-
otion of a secondary to the prime-vertical namely NM
with respect to a secondary to the celestial equator namely
PM which is due to Aksa or latitude of the place.

We shall first treat the subject on modern lines and
then depict Bhaskara’s treatment. Let g,¢, 4 stand
respectively for the Ayana, Aska and total Valamas

LN -

respectively, where by ‘total Valana’ we mean KMN
~ N\

which ia the algebraic sum of KMP and PMN.

From the spherioal sriangle KMP fig, 78.
L
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Sin 90F « sin g _sin (90—4)
8in (900 —8) s8in o gin (90--5)

Sin 6 = gin . cos 8in w 608 «
cos § cos 8
Q, Similarly from fig. 79, where
N ==gelestial pole, N=North-

point, M=centre of the Moon’s

disc, Q=Iatitude of the place,

h=hour-angle of the Moon,
-§ q0-M g=Aksha Valana and z=Aro
of the prime-vertical inter-
cepted between the zenith
and the foot of the secondary
to the prime-vertical drawn
through M, which are goes by
the name Sama- Vritta- Natam,
sa or zenith-distance measured along the prime-vertical-
u=distance of M from the prime-vertical measured along
the above Secondary,

™
Fig. 79

Sin ¢ _sin (180 —h) _ _ sinz

Sinp sin (90—g) sin (90—s)

Sins:singosinh:sin;vsinz I
cog p 008 §

In fig. 80, where (M) is the Moon’s disc, AB, the
diameter of the disc extending along the ecliptic (assuming
the Moon’s centre almost on the ecliptic, which is the
oase at the time of an eolipse), K, P, N respectively the
pole of the ecliptio, the celestial pole and the north poins
and 6, t the Ayana and Aksa Valanas defined above, the
eolipse starts at A, the eastern side of AB, called the
Kranti-Vritta-Prachi, AB being perpendicular to EF a
diameter of the disc secondary to the ecliptic. An observer
with his physical eye construes the diameter CD, which
is secondary to the prime-vertioal as indicating north and
south. Naturally therefore, it is required to specify the
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Fig. 80

location of A, the point of first eontact, with respect to
the diameters GH and CD, which are respectively East-
West and North-South. Suppose §+£=45°=GMA, then
we say that the eclipse begins at the north-point of the
dise and so on. For this purpose, the concept of Valana

N
arose. We have said above that the angle KMN=GMA
is to be got, and that it is the algebraic sum of ¢ and ¢,
meaning thereby that when K comes in between P and N,

or below N, which is also likely for places of latitude less
48
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than- N o, the obliquity of the ecliptic, KMN will be equal
to =6 and 6—¢ respechlvely.

The formula given in the present verse is
H

" Heos d
QOh) X Hsin ¢
Dj/z) " Hcos d
where % and D/2 are measured in nadis, & being the hour
angle of the Moon and D/2 half~the duration of the
Moon’s stay above the horizon.

or Hgin ¢ = Hsin (

Evidently the formula is intended as an approximate
one, for all practical purposes considered equivalent to
formula II given above namely

. . _Bngsinz =
gin § = e or Hsin ¢ Hoos
Thus in the place of z we are given T)OTh which means

* when z=90°, D/2 is the hour angle measured in nadis,
what is z when the hour angle is 2?”’. The answer is

This formula is approximate because » and z are

not striotly in proportion though % increases or decreases
along with z,

Nonetheless, the formula serves for practical purposes
very approximately and the beauty lies in the concept of
Sama-Vritta-Natimga, which means measuring hour-
angle in terms of the arc of the prime-vertical instead of
an arc of the celestial equator. The error, it will be noted
will not be much in low latitudes.

So far with respact to the commentary on the present
verse, - Now we shall see how Bhaskara tackles the pro-
blem rigorously in Goladhyaya under the caption Valana
Vasana’ ie. ‘concept of Valana’,
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We defined above that the angle KMP is Ayana

N\
Valana and the angle PMN as the Aksa-Valana. These
are vrespectively called Bimbiya-Ayana Valana and
Bimbiya-Aksa-Valana being subtended at M, the Gentre
of the Bimba ie. the disc of the Moon., If in fig. 78, T be
the foot of the celestial latitude of the Moon, then the

N\
respective angles KTP and P{I‘.\N are called the Sthaniya-
Ayana-Valana and the Sthaniya-Aksa-Valana ie. the
angles subtended at the Sthina or the construed position
of the Moon on the ecliptic.

The Ayana-Valana is zerc and a minimum when
Mor T lies at the solstices, and a mazimum equal to w
when those points lie at 7 or =, Similarly the Aksa-
Valana is a minimum equal to zero when M or T lies on
the meridian and & maximum equal to ¢ when those
points lie ati the east or west points. In other words the
Ayana-Valana increases from zero o w as M or T moves
along the ecliptic from a solstice to an equinoctial point ;
and the Aksa-Valana increases from zero to the maxi-
mum value of @ as M or T moves along zE or ze from z
the zenith to B or o along the primc-verticsl. Hence
Ayana Valana is perceived to be proportional to
H sin (90+21) where 1 is the longitude of M or T, since
When 1 =90, Hsin (90 + 90) = 0 and when i = 0,
H sin (90+90)=0 and when 1=0, Hsin (50+0)=R, a
maximum ; similarly the Aksa-Valana is perceived to
be proportional to H sin z where z is the Sama-Vritta-
Natamsa defined before, since, when z=0, Mor T is at
the zenith and the Aksa Valana is zero and when Mor T
is at the Hast or West point, z=90° and H sin z=R, a
maximum,

It is worth:hearing Bhiskara, at this junocture (Ref.
verses 80-74.under the caption: Valana Vasani pages-805-
308. Anandisrama edition of Goladhyaya Vol, 2, Poona).
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“The north and the south with respect to the Equator
and Eoliptic (ie. the north-pole and south-pole) are differ-
ent at the points » and =, being at & distance of  from
each other, Hence the Ayana Valanajya at those points
is equal to H sin 24° (w taken to be equal to 24°), Bub af
the solstices, the north and south will be the same (mean-
ing thereby that the angle subtended by PK at the solstices
is zero, or what is the same, the directions to the respective
poles (of the Equator and the Ecliptic) at the solstitial
points are the same so that the East will be the same for
both the oircles at those points. Thus there is no Valana
ab the solstices ie, P-~K =0 where >=cancer. In between
r and <%, the Valana is found in proportion to
H sin (90-+2) where 1is the longitude of the point and
in inverse proportion to H cos §, where O is the deoli-
H sin (904-2)

H cos o

0 is the Ayana Valana. Similarly at the points of inter-
section of the Equator and prime-vertical namely B and e,
the Unmandala (the Equatorial horizon) decides the
north-south direction with respect to the Equator, whereas
the horizon decides the same with respect to the prime-
vertioal. These north-south directions with respect %o
those two great circles namely the Equator and the prime-
vertical differ by the angle between the Unmandala and
the horizon which is equal PN=g¢g), the latitude of the
place; Hence at the Hast and West points the Akga
Valanajya or the H sine of Akga-Valana is equal to
Hsin ¢. Bub ab the zenith, the north-south directions
of the Equator and prime-vertical coincide so that there
is no Akga Valans at the zenith, Thus H sine of the
Valana is proportional to H sin & in between the points
on the prime-vertical between the zenith and the East and
West points.. (Roughly speaking) H sin ¢ =

Hsin ¢ Hsing '

nation. Hence H sin § = X H sin w, where

where §=Aksa Valana, z:
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Natamsa (defined before) and H sin z may be taken to be
roughly equal to %%% (as depicted before).

In the East the Akss Valana is north, for, in fig. 80

N\ .
GMI which gives the East of the Equator with respect to the
the East of the prime vertical, is north; whereas in the

A
West HMJ is south, (The definition of the direction of
the Valana is given as a directive to add the two kinds of
Valanas if they be of the same direction otherwise to take

A,
the difference; in the fig. 80, the Ayana Valana ie. IMA

PaN A\ N\
is also north, so that adding GMI + IMA = GMA is the
Sphuta Valana or the actual Valana), Hence Sphuta
Valana measured by GMA is had by the sum or difference

A N
of the two angles GMI and IMA which define respectively
the Ayana and the Aksa Valanas.

Similarly, at the point of intersection of the Eoliptic
and the prime-vertical, the Sphuta Valana is a maximum
which is the sum or difference of the Valanag as the case
may be. At points removed 90° on either side, from the
point of intersection of the Holiptic and the prime vertioal,
in ag much as the north-south directions with respect to
the Eeliptic and the prime-vertical coinocide, the Sphuta
Valana is zero.

If (as Lallscharya said) the Valana wvartes as the
Hversine at those points which are removed by 90° from
the points of intersection of the Eoliptic and the prime.
vertical, the Sphuta Valana will not be zero (which is
against common sense). Hence the Valanajya varies as
Hsine and not as Hversine,

We shall look at the subject from anosher point.of
view for the sake of olarity.... .....Flix & cirole on the sphere
with the celessial pole as centre and w as the angulmr
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radius. - ‘This oircle is called Kadamba-Bhrama-Vritta or
the circle in which the pole of the Eoliptic revolves round
P (due to diurnal revolution of the Barth), In that circle
Hsine of an angle will be H sin J...........0r again draw the
greaf circle with the planet’s position as the pole, called
the horizon of the planet, The arc intercepted on this
oircle between the Ecliptic and the celestial Equator will
be Ayana Valana and that intercepted betweon the celestial
Equator and the horizon is the Aksa Valana; and the
aro intercepted between the Ecliptic and the horizon is the
Sphnta Valana,

Or again draw a ocircle with K as centre and radius
w = 24°, This circle is called the Jina-Vritta where the
word Jina means 24, Let a secondary to the Heliptic
passing through K and K’ the poles of the Ecliptic revolve
with KK’ as fixed. When this revolving circle passes
through Cancer (Sayana) it will be_passing through P.
The angle turned through by this circle from Cancer, will
be equal to the angle turned through from P. The Hsine
of that angle in the Jina Vritta will be Hsin d of a
longitude equal to that angle, Thisis the Ayana Valana
and it arises at the end of Dyujy3, since the north-polar
distance of the planet is (90—@) whoes Hsine is Dyujya
ie, H 008.9.. The corresponding Ayana Valana in a circle
of radius R is got by multiplying by R and divided by
Hocos d

us -olarify Bhaskara’s mind. (Ref. fig. 81) Let

PBD 'be the Jina. Vritta drawn on the sphere with K, the
pole of .ehe Eoliptic as centre and w=24° as radius, Let
revolvmg secondary to the Holiptic coincide initially
wush KZcwhereZois Cancer. Let it ocoupy subsequently
the position KM where M is the centre of the Moon’s dise
taken to be on the Eeliptic as is the oase very approxi-
mately at the moment of an eclipse. . Now -the Ayana
Valana is the angle KMP. Let MA be the declination of
to L such that MK=ML=90°. Henoce



=& since PA=90° and LM=980°. The Zgyana Valana

~ .
KMP is measured by the arc ML whore ML is an arc of
the Grahaksitija or the horizon of the planet M (ie. the
circle with M as centre and 90° as radius drawn on the
gphere or what is the same the great cirole whose pole is
M). PB is an arc of the small circle parallel to KL which
is an arc of a great circle. Then in the Jina Vritta

N
sin =sin PK X sin PKB=sin o sin (90—4)=sin » cos 1

. sin KL = sin w cos 4/00s PL = sinoog = sin PMK.
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Here sinwoos 4 is oalled Sa-thribha-graba-ja-kranti or
the deolination of a point whose longitude is 50+1 where 4
is the longitude of M., As we have the formula sin § =
sin  sin 4, sine of the declination of such a point is equal
Yo 8in @ 8in (90+2)=sin w cos 2. When g is very small
gin PMK may be taken to be sin w cos 2 or what is the
same Sa-thribha-graba-ja-kranti as is formulated by Sarya-
siddbanta.

1t may be doubted how sin PB=sin PK sin 90—1,
(Ref. fig. 82). Let K’ be the centre of the circle PBD,

Fig. 82

K’ being in the plane of PBD., K’/P and K'B are radii
of this oircle, BSince the are PB stands for 50—i PK/B=
90—, Draw the H sine of arc PB, which is PB’. Now
K’P=H sin », as PK’ is .L2r drawn on OK
PB’=PK' sin PK'B
=H gin w X sin PK'B = : R
H sin » H oos 1
R
Hgin KL = E—-B—I-E—%——WXHOOBS—t
H sin w Hoqsa“



385

C Priag vertica

Fig. 83

Note 1. Bhaskara says PB/ (fig. 82) is Kranti-Sinjant; so
i H
it is because PB/=PE/ sin (90 —1) = 410 T
= H sine of the declination of a point whose longitude is
90+a = Satribha-grahaja-kranti as is mentioned by
Bhagkara and Sarya-siddbanta.

Note 2. If M be the centre of the Moon’s disec and
ABC its horizon defined above, the arc AB intercepted
between the Ecliptic and the Equator is Ayana Valana, the
arc BC intercepted between the Equator and the prime-
vertical is Akga Valana and the arc AC intercepted
between the Eecliptio and the prime-vertical is Sphuta-
Valana.

Note 8. The analysis of Aksa Valana proceeds on
gimilar lines, only we have P and N in the place of K
and P.

Note 4. The mistake of Lallacharya alluded to by
Bhaskara is as follows. The Ayana Valana, we have seen
is zero at the Ayanas ie. the solstices and maximum at
7 and = ie, the equincotial points removed by 90° from
the Ayanas. Now Hversine = R—H cosine so that when
90 —a=0 ie. 2==90°, Hversine (50—) = R—H cos (90—2)
= R—H sin 90° = R—R=0 and when 90—a=90° ie.

49
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2=0 Hversin (90—2) = R—H cos (90—21) = R—H sin a
= R—Hsin 0° = R -0=R. Hence Lallacharya took by
mistake that the Ayana Valana varies as Hvers (90—3)
instead of H sin (90 —a) since both Hversine and H sine
of S0=1 are zero at the Ayanas and maximum at 7 and =.
The same mistake was committed by Lallacharysa in the
context of the Moon’s phase also as criticised by Bhaskara
as we shall see later, In fact, this latter criticism is not
so justified as the former, as will be shown in that context,

Note 6. Ii instead of taking the Ayana Valana to
vary as Hsin (90 —2) we happen to take according to
Lallacharya that it varies as Hversine, then in places (Ref.
verses 38, 39 Valana Vasani, Goladbyiya) removed by
90° from the points of intersection of the Heliptic and
the prime-vertical, where there should be no Sphuta-
Valana, we do get that there is some Sphuta Valana there,
since the value of Hversine differs from Hasins, though
these two funections happen to be zero simultaneously and
maximum simultaneously.

Bhaskara continues in verses 66-68 (Ibid) ‘‘ I shall
now depiot Aksa Valana by means of the hour-angle,
Take the sum or difference of S'anku-Agra and Sanku-tals
according as they are of the same direction or not ; compute

—B? where B is the result; then w

!___BI

is equal to H sin ¢ where £ is the Aksa Valana

Comm. We saw before in the Trj 3
pragnadhyaya that
A=8S-+B vyhere A=Sanku- Agrs, S’=S’anku~tala.,ij,1d B=
Sanku-bbuja = H sin z where # 18 represented in fig. 79
Hence VK*—B® = H cos # 80 that the above form ;
.. _Hsingd XHsinh ...
Hsing = H oos 2 which is the same ag got by

the moderp formula in Equation IT..

ula gives
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Note. A small circle parallel to the prime-vertical
is oalled Upa-Vrtta. Also secondaries drawn to the
EHeliptio, Equator and the prime.vertical are oslled
Kadamba-Sitra, Dhruva-Satra and Sama-Sttra. They are
also called ocoasionally as Kadamba-prota=Vrtta, Dhruva-
prota-Vitta, and Sama-prota-Vrtta.

Bhiskara proceeds to find the Ayana Valana in a very
ingenious way in verses 69-74, We shall first give it a
modern freatment so that we may better appreciate his
genius, Let (S) be the Sun’s dise. (It does not matter
whether we take the Sun or the Moon). EQ is its diameter
along the diurnal circle, and CL along the Eeliptic. LM
is the difference of the declination of L and 8. Let
SL=na41and LM=aAs. We have

gin Q == 8in A 8in w}
differentating cos § As = sin o cos 1A4

D@ i; put A2 = b the angular
AB 003 S ad; pub A g
radius of the dise

A = b)(smmcosz bHyein w X H cosa 1
co8 § R X Heos

This gives the Valana in the dise of radius b, If that
be 80, what will it be on the sphere of radius R? The result
bHeinw X Heosd . R Hsinw X Hocos 2

. R X Hcosd b H cos
ag got before,

Let us hear Bhzgkara, “ put the dise of the Sun at
the point of interseotion of the Hcliptic and the diurnal
cirole, The Valana (LM of fig. 84) at the periphery of
the diso is the difference of the declinations of L and 8.
To get the value of this let us first get the value. 8L in

bX B, o that LM

o

terms of A, the longitude of 8. It is



Fig. 84

oAD I 2 is the Bhogya-
will be equal to ——— o0 X R where B is the Bhogya

khanda of 2. To obtain the value of the above for a cirole
of radius R from a circle of radius b, we have to multiply
by R/b. So, the result is

b;;ﬁB X Hsﬁn ot X% = E%%E But the value of B
is got as follows, ‘If for H cos 4 equal to R we have the
tirst Bhogyakhanda equal to 225, what shall we have for

H cos a?" The result is 225 Substituting for

R

Hsine 9225 X Heosd _ Hsinw X Hoeos A
B, we have 925 R 9)

Now, on account of declination, the Bun’s disc is inclined
like an umbrella, So LM of fig. 84 will take a position
like I/M as shown in fig. 85 where the triangle MLL/ is
similar to SMO, 8 being the centre of the Sun’s diso, O
the centre of the sphere. Henoe

M R ~ R Hsinw Heos 2
LM Hcos 8 R

Hsinow X Hcosﬂu gob before .



Comm. Bhiskara terms SL as the Dorjyintara’ or

the variation in H sin A, which he knows to E—PBR

Fig. 85 Fig. 86

But proceeding from first principles, as he always does,
he asks us to consider the Bhogyakhanda at 2 namely B.
If this be for an interval of 925", what will be it be for ‘5'?
bXB
926

uwsed is a8 used above, Bhiaskara says many a time that
the variation in Hsine is proportional to Heosine. This
concept he might have derived by looking at the Hsine
table of 90 Hsines. Hence the argument advanced by him
to reotify B is ‘If for Hoosine equal to R (at zero-value
of the argument) the initial Bhogyakhanda is 225, what
will it be for an arbitary H cos A ? The result is

The result is- Then to rectify B, the proportion

g—%ﬁ—’l X 925, Substituting this for B in the above, we

have bH G084 o 995 — b—g—f—f—g—i. This expression we

226
perceive ag no other than B R as to A (Hsin a),
for b is to be taken as AA. bis called by

R
as Dorjyantara meaning thereby A (H sin a).
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Then the next argument is ‘ If for Hsin o equal to R we
have the deolination equal to H sin », what shall we have
for the above Dorjyantara. The result is
H s;?_“’ x & GOSR" X b. ginge this is in modern terms
sin w cos A X b and b = Aa, we perceive that this expres-
gion is A (H sin O) where 9 stands for LM of fig. 84, ie.
the difference of the dcelinations of the points S and L of
the diso of fig. 84, The next argument advanced by
Bhaskara, namely that on account of declination, the dise
is slanted and LM gets thereby enlarged into L/M of
fig. 84 and adduces proporfionality from fig. 86. But this
argument seems to be faulty, In faof, the magnitude of
LM is got for the diurnal circle of radius H cos 8. To
get its value for radius R, the result would be
Hsin o Hoos 2 X b R _ b HsinwHecosa
R? H cos & R. H cos o
Then the argument is ‘If in the disc of radius b, we have
A6 equal to the above what will it be for radius R? The
H sin w H 008 a
H cos

result would be

Note. Our argument is based on the idea that lines
of the small circle namely the diurnal circle get enlarged
for a ecirele of radius R in the porportion R:H cos .
Bhaskara’s conoept of enlargement on account of slanting
does not seem to be plausible because, on account of deali-
nation, the disc may occupy an overhead position when
the Equator is itself inelined. Thus slanting does not
arige out of declination,

The question might be asked as to how Bhaskara got
the right answer by such an argument. He got the answer
up his sleeves through the other methods he gave and he
adduced this argument to get at that answer. ‘
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Becond half of verse 21 and first half of verse 29.

Hoeosa X Hsin o
H cos

The direction of this Valana is that of the hemisphere

north or south in which the Moon lies.

= H sin 0 where @ is the Ayana

Comm. 'This is the formula we have already derived.
Regarding the direction of the Ayana Valana, the conven-
tion is that it is to be considered north, if the Moon be in
the northern hemisphere, otherwise south, The reason is
that at the time of a lunar eclipse, the Moon being in opposi-
tion, if he be north, the Sun will be south of the Equator,
and fhe line BA of fig. 80 representing the Ecliptic which
is roughly the join of the Sun and the Moon will be north
of the line JI which is parallel to the equator. Thus the
direction of the angle IMA gives fthe direction of the
Ayana Valana.

Latter half of verse 22 and verse 23. Sphuta Valana,

The Hsine of the sum or difference of the two Valanas
according as they are of the same or opposite directions,
multiplied by the sum of the angular radii of the Moon
and Rihu, and divided by the radius gives the Hsine of
the Sphuta Valana, Those who said that the Valana is
proportional to the Hversine, do net know spherical
geometry properly.

Comm. The direction of the Aksa Valana, was defined
in verse 20 that it is north if the hour angle is east, other-
wise south, The meaning of this convention is that the
diameter of the Moon’s dise parallel to the Equator when
the hour angle is East, ia north of the diameter which is
parallel to the prime-vertical. Thus combining the two
conventions regarding the directions of the Valanas, it is
clear that if both the Valanas are north, the line MI is
north of M@, and MA is north of MI (fig. 80) so that the
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Sphuta Valana isTequal to the sum of the angles GMI and

N
IMA, Suppose MA is south of MI either falling within
the angle GMI or south of MG, then clearly the Sphutr

VaS e N
Valana GIA = GIMI ~ AMI or AMT — GMI as the oase
may be, which is obtained as the difference of the two

A
Valanas, Having obtained GMA as the Sphuta Valana,
H sin GMI multiplied by (P-+r) and divided by R gives
Hsine of the Sphuta Valana to be represented in a circle
of radius equal to P4r. This latter convention of repres-
enting the Sphuta Valana in a circle of radius P+r is only
a convention, The expression
H gin (Sphuta Valana) X P+r
R
where GMA is Sphuta Valana. In other words, we are
to draw fig. 87 to show the point of first contact namely
A in relation to MG the line parallel to the prime-vertical,

gives us RN of fig, 87,




398.

Verse 24. Conversion of liptas into what are called
Angulas.

H cos z of the eclipsed body at the moment of eolipse
being divided by the radius and the result being added to
2% gives the number of liptas per angula. The time
elapsed after the rise of the body being divided by the
rising hour angle (both being expressed in the same units of
time) and the result being added to 24 also gives the same,

Comm. While a parilekha or a geometrical drawing
of the eclipse is attempted at, the problem arises as to
how many liptas or minutes of arc giving the measure of
the disc are to be taken to be equivalent to one angula,
For example, suppose the diameter of the disc is 30’. With
what radius shall we draw the disc on a board or paper ?
In this behalf, & convention based on observations is being
mentioned. The dises of the Sun and the Moon are
observed to be big at rise and small when they are on the
meridian. So, taking the measure of the dise to be 30/
for example, if the eclipse takes place at the rige of the
diso, it is Jaid down to draw the disc with a radius of 15/2}
ie. 6 angulas at the rate of 2% liptas per angula. {The
word anguls here mentioned might not be what we take
it to be today in our daily parlance as one inch, The
gnomon or Sanku was taken in those days to be of a
length equal to 12 angulas. Bhaskara mentions in the
beginning of Lilavati that 8 Yavas are together equal to
one Angula, twentyfour angulag to one hasta, four hastas
to one danda and 2000 dandas to one Kroga, and 4 Krosas
to one Yojana, Also a vamsa is equal to ten hastas, Thig
gystem discloses that, a Yojana equals 6 modern miles
according to Bhaskara’'s estimate of the diameter of the
Earth as compared with its modern estimate. (The method
given by Bhiaskara as to how the diameter of the Earth
could be measured is found to be quite scientific as men.
tioned by us before).

§0
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83 modern inches or angulas are equal to 80 angulas
of Bhaskara as per the above.

At this rate the gnomon’s modern length would be

Reverting to our subject, we are asked to represent the
dise of 30 liptas when the eclipse takes place at noon by
30/3% angulas counting ab the rate of 3% liptas per angula,

Then the question arises as to what should be the
correspondence between the liptas and angulas when the
eclipse takes place in between the rise of the Moon (or Sun)
and its noon, The directive is that

one angila = 2% + E—ER(E—? =924 +cosz I

This means, supposing Z=zenith-distance of the body
to be 60°, one angula is to be taken to be equal to
2% + cos 60 = 2} + % = 3/ or 3 liptas.

The reason given by Bhaskara reiterating what Sri-
pati said in that behalf, as to why the Moon’s or Sun's
disec appears to be big at the moment of rising and small
on the meridian, is that the disc is immersed in its own
rays at noon and rendered small in appearance, whereas,
moet of the rays are swallowed by the earth or its atmos-
phere at the moment of rising, making the disc appear
large and easily visible.

Note. Bhaskara gives the proof of the above formula
I as follows. Since at the time of rise, we are taking 2%
liptas of the measure of the disc to be equal to one angula
and while the disc is on the meridian, 8% liptas are to be
taken a8 one angula, there is an increase of one lipta for
an increase of H oos # from zero at the horizon to a value
equal to the Radius. So, the argument adduced is ‘If for an
inorease of H cos z equal to the radius, there is an inoreage’
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of one lipta in addition to 24, what should the inorease-be
for an arbitrary H cos z'? The result is
H cos =
R

X 1 = q08 z.

Note 2. As finding cos z at the time of an eolipse
implies additional arithmetical oalculation, and as we have
already with us the data of (1) the time elapsed after rise
of the celestial body (Moon or Sun) till the moment of
the eclipse and (2) half the duration of the day of the body
ie. the rising hour-angle converted into time at the rate
of 6° per nadi, 50 a rough formula is given using % in the
place of z. The rule of three now used, is ‘If for an unnata
equal to the dinardha or rising hour-angle converted into
nadis, we have an increase of 1 lipta per angula (over and
above 2% liptas) what shall we have for an arbitrary un-
nata ?’ The result added to 2} liptas, gives the formula

Unnata
Dinzrdha
H, the rising hour-angle and Unnata corresponds to (H-h)
where % is the hour-angle at the time.

one angula = 2% + Dinzrdha corresponds to

. Bhaskara uses the word ‘Angula-liptas’ meaning
thereby the liptas that are to be taken to be equal to one
angula while drawing the parilekha of the disc at the time
of its eclipse. ’

Verse 26, Converting Valana eto. into Angulas,

The measures of the Valana (defined above) or the
Sara ie, the celestial latitude of the Moon or the Rghu
Bimba or the Bhuja (defined) are to be converted into
Angulas at the rate given by the above formula, While
drawing a figure of the solar eclipse, the celestial latitude
of the Moon is to be drawn in its own direction whereas in
& lunar eclipse, it has to be drawn in the opposite direction.

. Comm, The first part is clear. Regarding the second
statemens, in as much as fhe centre of the Rahu Bimba lies
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at the foot of the Moon's celestial latitude, the latter has
to be drawn in the opposite direction, since in the pari-
lekha, the centre of the Moon’s disc is to be at the centre.

Verses 26 to 29. How to depiet the eclipse in
drawing,

Draw a cirole with radius equal to that of the radius
of the disc of the eclipsed body and also a circle of radius
equal to r+p, the sum of the radii of the eclipsed and
eclipsing bodies ; let directions (east etc.) be marked in
the figure. In the outer circle, draw the Valanajya or the
Hsine of the Sphutavala with respect to the East point,
Valanajya pertaining to the moment of first contact. In
the case of the Moon, the Valanajya pertaining to the
moment of first contact should be marked from the East
point and that pertaining to the moment of last contact
should be marked from the West point. In the case of
the Sun the reverse is to be done. If the Valana is south,
it should be marked in the olockwise direction, otherwise
anticlockwise,

Having marked the Valanajya in the form of a Hsine,
draw the line joining the centre o the top of the Valanajya,
ie, to the point of intersection of the Hsine with the outer
circle, The celestial latitude of the Moon is to be drawn
from this top of the Valanajya in the form of Hsine again.
If the latitude pertains to the moment of first contact, it
should be drawn from the top of the Valanajya pertaining
to that moment, and if it pertains to the moment of last
oontact, it should be laid off from the top of the Valanajya
pertaining to the moment of last contact. The celestial
latitude pertaining to the middle of the eclipse should be
drawn from the centre along the line of Valanasttra or
the line joining the centre to the top of the Valanajya,
Taking the extremities of these latitudes, circles are to be
drawn with the radius of the eclipsing body to depmt bhe
eclipse at the respective moments.
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Fig, 88

Comm. Let M,, My, M, be the positions of the centre
of the Moon’s disc at the moment of first contact, at the
middle of the eclipse and the moment of last contact
respectively. Draw a circle with radius M, R, = r+p
which is called the Manaikyardha Vritta, Let M, E,;
represent the Eastern direction known as the Sama-
mandalaprichl, Draw E; V, equal to Hsine of the Valana,
so that M, V, is the Kranti-Vritta-prachi ie, the point
of intersection of the Hecliptic with the Hastern horizon.
Draw N, R, perpendicular to M, V, in the form of Hsine,
which is the latitude (Viksepa) of the Moon at the moment
of firs contact. With R, as centre draw the Grihaka-
Vritta with p as centre; this cirole represents the Rihu-
Bimba.

Bimilarly let M, be the centre of the Moon's disc at
the moment of last contact. Draw a circle with M; as
centre and »-p as the radius which is the Manaikyardha-
Vritta. Let My; W; be the direction to the West, the
Samamandalapraticht, From W, draw W, V, the Hsine
of the Valana, so that M; Vy is now the Krantimandala-
pratichl ie, the point of intersection of ecliptic with the
western horizon. Let, the Vikgsepa Ny R; be drawn as a
Hsine of the Manaikyardha Vritta., With R, as centre
and radius p, draw the Rahu-Bimba. .

Let M, be the centre of the Moon’s diso at the middle
of the eclipse. Liet M, S; represent the South with respect
to the prime-vertical. From 8; draw the Hsine of the
Valana 8, V, so that M. V, is the Kranti-Vritta-Dakshini
ie. the South with respeot to the HBoliptic. Now the
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Viksepa or the celestial latitude of the Moon M; R, is to
be drawn along this Valanasitra M, V. With R, as centre
and radius p drawn the Rahu-Bimba.

V3.

« N

Ny
Ny &
R ‘Ra, &
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Pig. 89 Depiction of Fig. 88, keeping the Moon fixed

The slight flaw in this figure is that ML, L; implied
as the path of the Moon is taken to be parallel to the
ecliptic R, R, Ry the path of the eclipsing body the
Grihakam3rga, in as much as latitudes are drawn perpendi-
ocular to ML, L.

This figure depicts a total enlipse of the Moon., If M
coincides with R. at the middle moment of the eclipse,
then the eclipse is called central.

The duration of a ocentral eclipse will be on the
average the time that the Moon’s diso takes to oross the
diameter of the Rabu-Bimba with its relative velooity.
Hence the mean duration of a central eclipse is
Average diameter of Rahu--Average diameter of the Moon

Relative velocity of the Moon with respeot bo the shadow
(81-+-64) X 24 145 290 ’
= To0i-35"—60/-" ° ~ T X 4 = Bl
4 hrs-456 minutes approximately.
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Verse 30 and first half of 31. Geometrical depiction:
of the eclipse at the beginning and end of totality and
also of the magnitude of the eclipse.

The Bhuja is to be laid from the centre of the Moon
along its Valanasutra or the line indicating the direotion-
of the ecliptic; the latitude is to be drawn from the end
of the Bhuja and perpendicular to the Bhuja. The hypo-
tenuse is to be drawn from the centre-of the Moon, Taking
the point of intersection of the latitude (Koti) and the-
hypotenuse, as centre and radius p equal to that of the
eclipsing body, if circles be drawn, from these circles could
be known the points where totality begins and ends as
well ag the magnitude of the eclipse at any given moment.
Or these could be found in another way as follows.

Comm. The method given above for depicting the
phases of an eclipse geometrioally, could be applied for any
moment during the course of the eclipse and depends
upon before-hand computed Bhuja and Koti. Refer to
fig. 90. Let M be the centre of the Moon’'s disc. Mark
Eo the East-west line drawn through M. Compute the
Valana for the required moment, either for the moment
when totality begins or for that when totality ends or for

8. 90
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any arbitrary moment whatsoever. With this Valana
primarily laid in the Manaikyardha Vritta, decide the
Kranti Vrittapracht or the East-West direction of the
eclipse. Thus in the figure V. V, is this direction. Then
lay ofi the computed Bhuja along this V, V, from M, say
MA for the Sammilana moment or the moment when
totality begins or MC for the Unmilana moment or the
moment when totality ends or MD for an arbitrary
moment. Draw AR, or CR, or DE equal to the latitude
at the particular momen$, perpendicular to the Valana-
sitra. In the figure drawn the Valanasttra is shown to
be the same. This does not mean it will be the same
throughout. It will be changing because the position of
the Eecliptic changes from moment to moment. So Bhzs-
kara uses the word ie. ‘the respective Valanasftra ’.
Also the latitudes will be differing from moment to
moment as well as the Bhujas both of which are to be
computed for any moment along with the Valana. (The
method of computing the Bhuja was given in verse 15).
Computing the respective Karnas or the hypotenuses from
the formula K = &/Bhuja®+Kosi?, (Koti is here the lati-
tude) with centre M and radius equal to the Karnas, if
arcs be drawn to cut the latitudes, the points of intersection
would be no other than R,, R, or E. Join MR;, MR, and
ME. With centres R, and R, and radii equal to p—r,
(where p is the radius of the Rihu-Bimba, and r the
radius of the Moon’s dise) if circles be drawn, thoy just
touch the Moon's disc at F and G which are the points
where totality begins and ends respectively, With centre
E and radius P, if a circle be drawn, that will show what
“amount of the disc is shadowed as well as the measure of
the magnitude of the eclipse (defined in verse 11).

Note. In the above commentary and figure we
have depioted MD as the Ista-Bhuja or the Bhuja at a
given moment, taking a moment prior to the Unmi-
lanakala, for showing the magnitude of the eclipse,
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If & moment in hefween the Sammilana and Unmilana
were taken, the then Bhuja and Ko$i eould be no doubt
computed, but the question of magnitude of the eclipse
does not arise as the entire dise has been plunged in the
shadow,

Second half of verse 31 verse 82 and first half of verse
83. Alternative method of depicting the eclipse geo-
metrically.

Joining the upper end of the latitude of the middle
moment of the eclipse to those of the first and last
contacts, we have what aro called the Pragrabamirga and
Moksamarga ie. the path of the centre of the eclipsing
body from the first contact to the middle moment of the
eclipse and that from the middle moment to the last
contact, The lengths of these paths could be computed
and they cculd be drawn before hand. Then with the
centre of the Moon as centre and radius equal to p—r, if
a circle be drawn, it cuis the paths deseribed above each
in one point. With those points as centre and radii equal
to p, if circles be drawn, they will touch the Moon’s dise
each in one point which are respectively the points of
Sammilana and Unmilana,

Comm. In as much as the latitude of the Moon
differs fromn moment t0 moment, the Pragrahamarga and
the Moksamarga are separaied to zchieve a little more
acouracy than could be got by joining the upper extre-
mities of the initial and final latitudes, The remaining
statement is evident, for, at the moments of Sammilana
and Unmilana, the distance between the centres of the
eclipsing body and the eclipsed will be p—7, 8o that the
points of intersection of the Pragrahamarga and Mokga-
mirga with the circle whose centre is the centre of the
eclipsed body and radius p—r will give the centre of the
eclipsing body.

61
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Latter half of verse 383. To know the magnitude of
the eclipse at any given moment during the course of the

eclipse,

Let the product of the time elapsed from the moment
of first contact and the length of the path of the eclipsing
body traced from the moment of the first contact to the
middle of the eclipse divided by the time between the
moment of first contact and the middle of the eclipse, be
z. Similarly let the produet of the time before the end of
last contact and the path of the eclipsing body traced
between the middle moment of the eclipse and the moment
of last contact divided by the time between the middle
moment and the moment of last contact be y. Lay off
z and y units of length from the first and last points of
the path of the eclipsing body along the path respectively.
Then we get the points of the centre of the eclipsing body
ab the required moments, With these points as centre
and radius p, if circles be drawn, they represent the
eclipsing body. The length of the diameter of the eclipsed
body shaded, gives the magnitude of the eclipse called
grasa.

Comm. Here rule of three is applied namely If
during time T, or T; a path equal to I, or I, in length is
traced what length will be traced in times ¢ or ¢,?”,
where T, and T, are the times called Sparsa-Sthiti-Khanda
and Moksa-Sthiti-Khanda respectively, !, and I. are the
times elapsed from the moment of first contact or before
the moment of last contact and ¢, ¢. are the times from
the beginning of the eclipse and before the end of the

eclipse respectively. Then z and y give the points where
the centre of the eclipsing body lies.

Verse 35. @iven the magnitude of the eclipse at any
time to obtain the time elapsed after the first contacs.

The time taken by the centre of the eclipsing body to
move through the segment of the path of the eclipsing
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body which lies between the position of the eclipsing body
at the moment of first contact and the point of intersection
with the path of the eclipsing body of the circle drawn
with the centre of the eclipsed body as centre and radius
equal ito the difference of p-+r —g where g is the magni-
tude of the eclipse (grasa) at the moment, or similarly the
time taken by the centre of the eclipsing body to move
through a similar and equal segment of the path of the
eclipsing body on the other side, gives the time elapsed
after the moment of first contact or the time before the
moment of last confact.

Comm. This is the converse of the above problem.
The method is olear being based on rule of three as above.
Both the problems could be algebraically expressed as
follows. Liet T, ¢, 1, g, and %, stand respectively for the
Sthiti-Khanda ie. the time between the moment of first
oontact to the middle of the eclipse or the time between
the middle moment to the moment of last contact; (2)
the time elapsed after the moment of first contact or the
time before the moment of last contact, as the case may
be; (8) the length of the Pragrahamarga or Moksamarga ;
(4) the grasa which is defined as p-+r—Fk; (5) the Karna
whose expression is ~B*+ 3%, B being the Bhuja defined

and ,B the latitude of the Moon.

Then the following working is stipulated (a) If in
time T, & path of length [ is traced, what will be traced in

.t it
1t ig &2 —_] — 2 2 . K2
t? The resuﬁlsT (b) Then B =1 oy (e) B +,8 K

(d) p+r—k=g. Thus combining all the steps

P(T—t) + BT =T (p+r—g) I
given ¢, this equation gives g and given g it gives ¢,
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Again the following relation holds good between T
and }, I = (p+r)*— B 1II and
l
'm'l"sl

means T M III

= T with the nomeneclature already employed which

In the above working, the fundamental elements are

7, B, my and s, with which the other elements could be
worked out, Replacing the other elements from equation
I, we have

B2 "/ +7') ""18
R e
s (pFP—B\ _ (pt+r) -8 o
g <(m1"31) ) (g —s,)* tr—=g)
ie, {(p+r)*—B"} N(pFr)P—B—t (my~—s)]" +
B (p+r"=8) = (p+07 -8 (p+r—g)
io. (Nppri—B° ~t (mi=s) ) + #* = (p+r—g}* IV

Puatting ¢=0 in this equation, we have
(p4r)* = (p+r—g)® ie. g=0 which mecans at the mowent
of first contact, the grasa is zero. Again putbing

_moia s NpFr)? B Y S
t="Tie t= S ie. t (m.-s,) ——-A/p__!,_?‘z__ﬁa
we have

B = p+r—g* ie. g = p+r—f which gives the graha
at the middle of the eclipse which was defined ag the
Sthagita, In equation IV which we may take as a funda-
mental equation, the two unknowns are {and ¢ one of
which being given the other could be got.

Verse 36. The colour of the eclipe.

When less than half the dise of the Moon is eclipsed,
the colour will be what is called Dhumra ie. of the colour
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of swmoke; when the disc is half eclipsed, the colour is
black ; when more than half is eclipsed, the colour would
be & blend of black and red and when the entire disc is
sclipsed, the colour will be what is called piganga or
reddish-brown. :

Comm. Clear.
Verse 37. When declare the occurrence of an eclipse.

When even one-sixteenth of the diameter of the
Moon’s disc is shadowed, the eclipse will not ba visible
in as much as the shadowed portion is covered by the
illominating rays of the dise. In the case of the Sun,
when oven one-twelith of the diameter is shadowed, the
eclipse will not be visible for the same reason. Hence we
shall not declare the occurence of an eclipse upto the
shadowing of the dises to the extents stated above.

Verses 38 and 39, Hxamples which disclose the
invalidity of construing Valana in terms of Hversine
instead of Hsine,

When the Sun is in the zenith, the Eeliptic being
vertical, the Valana is clearly seen to be the Agra of
(©-+90) where © is the longitude of the Sun. If you
could show that the Valana will be the same on the basis
of Hversine-formula, then I would accept that what
Lallacharya postulated in bis work Sisya-Dhi-Vrddhida
is correct,

Again, in a placo of latitude 90—w, » being the obli-
quity of the Ecliptic (w is taken to be 24°); when the Sun
being situated in Mega, Vrgabha, Mina or Kumbha, the
Moon contacts him from the south at the momen$ of a
solar eclipse, in as much as the Haliptic coincides with
the horizon. In this circumstance, how could the Valana
be equal to R, as made out by the Hversine—~forwula.
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Comm. Lallacharya gave the Valana in terms of the

following verses * wuaif¥smrawiwaraRAICA
A
£ AT TG STATTIAG 9

FAGAT...- Verses 23, 256 Chandragrahanadbikara, wherein
he formulated the Valana in terms of Hversine in the
place of Hsine. The reason for his slipy we have already
explained. Now Bhaskara gives two glaring examples to
substantiate his formula and to show up the flaw in
Lallacharya'’s formulation.

In the first example, where the Holiptic takes the form
of a Vertical, the Sun being in the zenith, the Spasta
Valana which is the angle between the Ecliptic and the
prime-vertical is the same as the arc between the East
point and the intersection of the Ecliptic with the horizon
known as Liagna, Since the Sun is then in the zenith,
the longitude of the Lagna is (904 @) so that the said
arc is the Agra of the point whose longitude is 90+ © as
stated. Hence Spasta Valanajya = sin A = sin J/cos ¢
where A is the agra (using Napier's rule from triangle
PNL where L is the Lagna N the north-point and P the
celestial pole). In the Hindu form, this is given by

. — T ain A RHsing
Hsin V=HsinA _Heosé

of a point of the Eoliptic whose longitude is (904 ©). But
Lallacharya’s formula gives the Valanajya as Hvers 9,
O being the declination of a point of the Heliptic whose
longitude is (90-4), 2 being the longitude of the Eelipsed
body ignoring the latitude. In other words, in the case of the
lunar Helipse when the Moon is in the zenith his Valanajya
= Hvers 8 (8 having the above value) the Aksa Valanajya

R H si .
ﬁ—c—z—;—gf < Hvers 9, the mistake

where g is the declination

here being zero. Since

committed by Lallacharya is evident even supposing

Hoos ¢ =R when we ignore the latitude ie, take ¢ to
be zero.
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In the second example cited by Bhaskara the Eeliptic
coincides with the horizon, the pole of the Heliptic being
in the zenith. Then in a Solar Eclipse the Moon eclipses
the Sun from the south showing that H sin V= R, That
H sin V = R is also evident from the fact that the Ecliptic
makes 90° with the prime-vertical, having coincided with
the horizon. But here according to Lallacharya’s formula,
H sin ¢ = Hvers 90° = R and Ayana Valanajya is Hvers ),
where @ is the declination of a point whose longitude is
90° more than ©. If © = 30°, 60° H sin § =
R VIRsinw . sinw

3 sin /R or SR egoor N3/2 sin w.

Evidently the sum of the two Valanas Ayana and Aksa
cannot be 90° as is also vouchasafed from geometry. So,
here also, the flaw is evident.

Note 1. Sripatyacharya also followed Lallacharya
vide verses 18, 19, 20 Chandragrahanadhyaya, Siddhanta
Sekhara. It will be noted that the commentator of
Siddhanta Sekhara, while reiterating Bhaskara’s stand as
the correct one, himself commits a mistake in saying

In fact

gin @ sin & _ sin ¢ sin z
cos cos 9

The commentator cited above overlooked that sin ¢ could

8in ¢ sin A

os W

gin ¢ = a3 proved by us before,

be also equal to , Wherein natakala also is

implied.

Note 2. It will be noted that even Prthudakicharya,
while commenting on Brahmasphuta Siddhanta, ignored
Brahmagupta and followed Lallacharya blindly.

Note 8. The formula given by Lallicharya and
-followed by Prthidaka as well as by Sripati is very rough
besides containing the flaw cited, in as much as both M
and § are taken o be zero, which are not g0,



SURYAGRAHANADHIKARA

Verse 1. In as much as the observer situated on the
sarface of the Harth and as such elevated by the radius
of the Earth from the centre there of, perceives not the
Sun and the Moon having the same longitude at the
moment of conjunction, to be in the same line of sight,
heyt being depressed unequally having different orbits, so
I proceed to elucidate what are called Liambana and Nati
ie. parallax in longitude and latitude, on which aceount
they are not in the same line of sight.

Z

Fig. 91

) Comm. (Refer fig. 91) Let E be the centre of the
Earth, M and 8 the centres of $he dises of the Moon and
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the Sun. Let A be the position of an observer on the
surface of the Harth, elevated by the radius EA from E.
Let M and S be in the same line of sight as seen from E.
But as seen from A, AS and AM ave respectively the lines
of sight to the Sun and the Moon. Evidently thess lines
of sight differ the Moon being depressed more than the
Sun. If a line AS’ be drawn which is parallel to the central
line of sight namely EMS, we find that the Sun is
depressed by the angle S/AS whereas the Moon is depressed
by the angle SY/AM’, Tkese angles differ becauss the orbits
of the Sun and Moon differ.

Here the angle S’AS will be very very small, its
magnitude being in truth just about 87 only. But the
angle S’AM’ will be sufficiently large since the Moon is
very near the Earth compared with the Sun. Taking ES
and AS fio be almost parallel due to the largeness of the

N\
Sun’s distance, the angle SAM will be almost equal to

Fa
AMS so that we could consider that the Moon is depressed
from AS the line of sight to the Sun by the angle SAM’' =

AME This angle AME is called the geocentrio ps.ra.llax

of the Moon and the angle ASE that of the Sun M’AS =
angle of depression of the Moon over and above that of

A A
the Sun = M/AS’ — M'AS = EMA — ESA = geocentrio
parallax of the Moon minus geocentric parallax of the Sun.

Verse 2. The presence or absence as well as the
positiveness and negativeness of the parallax in longitude.

Compute the Lagna ab the moment of conjunction of
the Sun and the Moon. There will be no parallax in
longitude when the Sun is situasted at the point ocalled
Vitribha or the point whose longitude is = Li—90°, L
being the longitude of the Lagna ie. the ascendant which
is the point of intersection of the Eoliptic with the

62
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horizon, If the Sun’s longitude falls short of the longitude
of the Vitribha or exceeds it, there will be parallax in
longitude which will be positive in the former case and
negative in the latter,

Fig. 92

Comm. (Ref. fig, 92) Let SN be jhe horizon, Z the
zenith and VA the Eeliptic. A is the ascendant or Lagna.
Let V be the point called Vitribha whioh is 90° behind A.
Strictly speaking V is called Vitribhalagna or lagna from
which three Ragis or 90° are subtracted (Bha=Rayi.
Fafifaclzan fafon; faf 9 aq ewg T Alaveaa o,
a point whose longitude is got by subtracting three
Ragis from that of the Liagna). Let ZV be the vertioal of

\
V eo that ZVA = 90°. It will be seen that AV = g0° as
follows. Let A’ be the point where the Eeliptio intersects
the horizon on the west. One will construe that the
‘Eoliptio is bisected by the meridian; but it is not so,
Spherical triangles AVZ and A'VZ being right-angled a4



411

V are congruent because AZ = A'Z and ZV is common
S AV = VA’, But AV + VA’ = 180° because the Ecliptic
and the borizon being two [great circles, they bisect each
other. Hence AV = 90°. Then a celestial body situated at
V will be depressed along ZV the vertical, say, to a point B.
Let © be any arbitrary position of the Sun; then @ will
be depressed along the vertical Z ©®, say, to a point C.
Draw CD perpendicular on the Eeliptic, Then ©D is the
component of the parallax ®C along the Ecliptic where
as DC is its component perpendicular to the Heliptic.
Thus ©D is the parallax in longitude and DC is the
parallax in latitude. The word °‘Lambana’ means
etymologically e «qAfa @wwam ie. that amount by
which the celestial body is depressed (along the Heliptie).
In Hindu Astronomy the word Lambana is applied to
parallax in longitude alone whereas the word Nati is
applied to parallax in latitude. Hence fo translate
Lambana as parallax alone is not correct. The word
Drik-lambana is applied to mean parallax along the
vertical, and the word Sphutalambana is occasionally used
to connote parallax in longitude.

As Bhaskara rapidly comments on the verses in this
Ganitadhyaya, he having dealt with the subject of parallax
elaborately under the caption, Grahapa Vasani, in the
Goladhyaya, to catch up his thought, we have tio treat the
subject first from the modern view point and then elucidate
what he has said in the Goladhyaya, much matter of which
is reiterated by him under the commentary here in the
Ganitadhyaya.

(Ref. Fig. 91) From the AEAM,

a4 a
the Earth and d the distance of the celestial body (here the
Moon) ‘ :
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I : PaN AN
" 8in EMA = gsin ZAM = EMA expressed in radian

. N\
measure since EMA is very small
~

EMA (expressed in radian measure) = gsin z I where

z is the apparent zenith-distance of the Moon ie. zenith-

distance as seen by the observer (in contradisfinction to
PaN
the geooentric zenith-distance of the Moon namely ZEM).

ey
In particular, when z = 90°, EMA =§which is the

maximum parallax known as the horizontal parallax ie.
the parallax when the Moon is situated on the horizon of
the observer, Also the parallax is zero when M is situated
at Z ag is seen from formula I and as is rightly remarked
by Bhaskara in the words ¢

\

In fig. 91, EMA is the angle by which the line of
sight of the observer namely AM is depressed from the
geocentric line of sight EM. Since the plane of the paper
represents a vertical through the Sun and the Moon, the
depression of either the Sun or the Moon or the exacess of
the depression of the Moon over the Sun are all in the
vertical plane. This depression is ealled Drik-lambana
becsuse it is a lambana or depression in the Drik-mandala
or vertioal,

This Drik-lambana varies as sin z as is seen from
formula I where a, and d may be taken to be constants.
(Both « and @ vary slightly a varying slightly from place
to place on the Earth, the Earth being an oblate spheroid,
and d varying from posifion to position-of the Moon).

The maximum horizontal parallax is given by% in

radian measure which is equal to, according to Bhzskara’s
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. 1581 1 _ ray .
estimate 9 X 51566 X 8438 = 53/ approximately. Its

modern value is about 57/ so that the Hindu estimabe is
not far from truth. Here 15681 and 51566 are fhe values
of a and 4 in Yojanas according to Bhaskara.

The Hindu astronomers do not, however, proceed
exactly as we have done in the para above to obtain the
maximum horizontal parallax. Their treatment is a little
different and is as follows. Whereas according to Modern

A\
astronomy EM’A (fig. 93) is viewed as the horizontal

m

Fig, 93

A
parallax, in Hindp Astronomy MEM’ or the angular
measure of the Moon's path equal to the radius of the
Earth is taken to be the horizontal parallax. Both,
of course, mean the same as is seen from the figure.

In as much as the Hindu astronomers knew very well
what they term &®I%TW or converting linear distances
into angular measure, converting a linear magnitude equal
to the radius of the Earth namely MM’ at the lunar orbit
into angular measure, they got

MM’ 15681 e — xaldoN
EM X 8438 2 X 51566 radians = 53'~42" as the

maximum horizontal parallax.
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Having got this estimate, they reckoned this angular
measure in time as the time taken by the Moon to traverse
the distance MM’ equal to the radius of the Harth as
follows. The Moon traverses 790/-35", which is exactly
16 times 52-42/. Hence they said that the maximum
horizontal parallax is Fth of the Moon's daily motion in
arc and expressing it in terms of time, that the maximum

horizontal parallax is #5 of a day or fsth of 60 nadis or
4 nadis.

That this horizontal parallax is 4 nadis as a maximum,
would have been also verified at the time of a solar eclipse
when the Sun was situated on the horizon at the time of
conjunction, by the fact that the eclipse occurred four nadis
in advance of the moment of geocentric conjunction
(which could be calculated very accurately by the Hindu
astronomers, as could be seen by the very correct estimate
of a lunation in Hindu Astronomy. In fact, the length
of a lunation must have been estimated correctly by noting
the time-interval between two solar eclipses or lunar and
by dividing that time by the integral number of lunations
elapsed in between the two'eclipses).

The question then arises as to how tha Hindu Astro-
-nomers could know the distance of the Moon. From the
estimate of the horitontal parallax by astual observation,
and from the geometry of fig. 93, a correct estimate of the
distance of the Moon must have been arrived at.

. Having thus known that the Moon traverses a
distance equal to the radius of the Earth in 4 nadis, his
daily linear motion was estimated to be 15 times the radius

of the Harth ie, w" 11858% Yojanas.

.+ The daily motion of the Moon having ﬁhus__heen
estimated almost correctly, an act of inexpedience on the
part of the Hindu astronomers was that they should have
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presumed that all the other planets including the Sun would
be traversing the same linear distance during the course of
a day. This led to & wrong estimate of the Sun’s distance
as well as his spherical radius, Also, they supposed wrongly
that the parallax of the Sun also would be equal to 4th
of his daily arcual motion.

Their estimate of the spherical diameter of the Moon
was, however, very mear the truth, for, they argued, that
if 790'-36/" angular motion per day corresponded to 11858%
Yojanas in linear measure, to what linear measure did the
angular diameter of the Moon namely 32/-0/~9// corres-
pond ? The answer was

118582 X
790/-36"

LA

Fig. 94

It may be here pointed out thal there is a relation
between the angular radii of two celestial bodies as seen
from each other and their mutual horizontal parallaxas
(Fig. 94). Let E and M bet he centres of the Harth and

2\
the Moon respectively,. EMA = horizontal parallax of
the Moon = angular radius of the Earth as seen from the

e
Moon and BEM = Angular radius of the Moon = Hori-
zontal parallax of the Earth as seen from the Moon. Thus,
we see that the Earth will be seen from the Moon, as a
Moon with an angular radius equal to 57/. In other words
our Earth will be a Moon to our Moon, having near]y 16
the area of our Moon’s diso.
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The petiphery of the Moon’s orbit was arrived at as
follows. “If 790/-35" of the Moon’s angular motion
corresponds to 118582 Yojanas to what peripbery must
360 X 60/ correspond ?”’ The answer is

11868% X 860 X 60 _ 394000 Yojanas. Reverting to the

790/-35”
gubject of parallax on hand, the Drik-lambana or the
parallax along the vertical has the formula 4 Hsinz I

R

nadis in Hindu Astronomy where 4 nadis is the maximum
parallax obtained when H sin z = R.

From fig. 92, Co® = CD* 4+ Do?%ie,
Drik-lambana® = Nati* 4 Sphutalambana® II

N .
CD = @Csin CoD =é_HT)m_n_zf

~
sin CeD =4 sinzsin VO Zz

= 4 gin ©Z sin V/G\Z = 4 gin ZV

Thus, the parallax in latitude at any point of the Eecliptio
is that at the Vitribha which is conveyed by Bhiaskara
in the words “®&FdIv-at 9q warqg fATAH @4

N
Also ©D =C0® 008 COD = 45sin ©Zcos ZoV
Rg[smV@ v

= Maximum parallax X Vitribha-Sanku X H sine of the
arc Vo.

In the above working we proceeded in a modern way.
It is worth-hearing Bhaskara as to how these results were
arrived at elegantly and ingeneously from first prineiples,
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In fig. 91, EMS is called Garbha-Sutra whereas AS
is called Drsti-Satra.
ie. In as much as the Moon is depressed from. the
Drk-Sutra, so this phenomenon goes by the name Lambana.
It will be noted that in Hindu Astronomy geocentrie
parallax will not be treated separately for the Moon and
the Sun but dealt with simultaneously as it is called for,
in the context of a solar eclipse, They were interested
in knowing the relative depression of the Moon with
respect to the Sun rather than knowing the separate
magnitudes with respect to the Moon and Sun, for which
they had no application. '

ie. In as much
ag the Garbba-Sutra and Drk-Sttra are identical in the
direotion EAZ (fig. 91) there is no parallax at the zenith.

Now consider the plane through zv of fig. 92. Suppose
the EMS of fig. 91 is in the direction EV. Then both
the Sun and the Moon may be considered t6 have the
game Vitribha at that moment of conjunction. Both the
Sun and the Moon being then depressed along Zv, to V/
and V/ respeotively the Eoliptic will then be a ecircle
parallel to VA (fig. 92) through V' dnd fhe orbit of the
Moon will be another circle parallel to VA through V#, V#
being below V’. If we neglcet, for a moment, the depres-
sion of the Sun, and consider VD %o be the Ecliptic on
which the Sun is situated undeflected, and BC to be the
deflected orbit of the Moon relative o the Sun, then VB
is the Nati of the Moon, which will be the same distance
between VD and BC, ie. the orbits of the Sun and the

Moon.

This faot was proved by us analybiocally in the modern
way showing that CD = BV,

This Nati it is that influences the latitude of the moon,
‘which may cause apparent conjunction when there is no’geo-
I ;
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ventric conjunction and which does not show an apparent
conjunction when there is a geocentric conjunction. In
other words parallax in latitude plays a very important part
in solar eclipses. Also ® D being the parallax in longitude,
the moment of apparent conjunction might be preceded or
followed by a geocentrie conjunction according as the Sun
lies along VA or AV. Thus having determined the exact
moment of apparent conjunction using tne magnitude of
©D, then we have to rectify the latitude using the
magnitude of VB, If that reotified latitude of S falls
short of R-+r where R is the angular radius of the Sun and
r that of the Moon, then there will be a solar eclipse.

It will be noted that when the Sun coincides with V
at the moment of conjunction, there is no parallax in
longitude ® D being zero (Fig. 92) in that position. Also
there will be no parallax in latitude when the HEcliptio
assumes the position of a vertical circle passing through
the zenith, the Drik-lambana then being entirely along
the Keliptie. In this case the Vitribbalagna V will

g 4HsinVo
R

coinoide with Z an which is termed the

Madhyamalambana is now entirely along the Eecliptic and
as such it is the Sphutalambana in this case. We have said
above that when V coincides with Z, the Madhyamalambana
is zero at Z, and that the maximum is equal to 4 nadis on
the horizon. In between Z and the horizon it has the formula
4Hsin VO
R
the H cosine of the zenith-distance of V ie. the Sanku of
V is R, the entire lambana is along the Beliptic, the nati
being zero, and the Madhyamalambana is itself the Sphuta-
lambana, and again when V does not coincide with Z,
H cos ZV is no longer R but has assumed Koti-Rupa ie.
the form of a H cosine, as well as the Sphuta-lambana
also, whioch assumes Koti-Rupa ie. of the form ©D of
Fig. 92, where ©C is the Madhyamalambana, @D is

. Noting farther that in this case when
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Koti = Sphuta-lambana, and DC = Bhuja = Nati, it is
argued that the Sphuta-lambana is proportional to
H cos ZV, agsuming a maximum value when V coincides
with Z ( © not being at Z).

-

Verses 3 and 4. Parallax in longitude based on two
proportions.

Compute the H cosine of ZV, by calculating the
rising time of AV, the Kujya, Dyujya and Antya pertain-
ing to V, as was formaulated in the Tripragnadhikara, then
Hsin VO, multiplied by 4 and divided by R, and again
multiplied by H cos ZV and divided by R again gives the
parallax in longitude.

Comm. As per the above formula, parallax in longi-
tude equal to ® D of Fig. 92 is equal to
4 Hsin VO X Hcos ZV

R’ ’

of two proportions that the parallax in longitude is
proportional to H sin Vo as well as H cos ZV. This we
have already derived through modern methods as formula
IVv.

This is evidently derived ouf

Under verse 3. The two proportions are (1) V coin-
oiding with Z, if by H sin V © equal to R, we have 4 nadis
as the maximum lambana on the horlzon, what shall we
have by an arbitrary H sin V©? The result is

M&nd (2) V not coinciding with Z, if by

R
4Hsin VO
R

Hoos ZV equal to R we have a8 the

Madhyamalambana, what shall we have for an arbitrary
Hcos ZV? The result is

4 H 9;‘ Vo  H c‘; ZV .5 formulated.

First half of verse 5. Alternate method of rectifying
lambana. The Madhjamalambana maltiplied by 12 and



420

divided by the Chayakarna of the Vitribha will also give
the Sphuta-lambana,

Comm. From Tripragnadhikara, we bave

—1—1% = —H—GT?—Z 80 that in the formula cited above instead of

H ct;: Al we are asked to use 12/K.
Latter half of verse 5 and first half of verse 6.
D;k-natx = Hoos? ZV — Heos' Z 0O
= Hgin? Zo® — Hsin® ZV (fig. 92)
4 Drk-nati

= Sphutalambana.

Comm. Wae shall first prove ﬁﬁis on modern lines,
-Cos 7Z©® = cos ZV cos Z ©
008" ZV — cos® Z® = cos’ ZV (1—cos® VO)

3 . 3
= cos® ZVsin® Vo — Hcos ZV}{:‘Ism Vo .

Also cos® ZV — cos® Z ©
- =i 20 — gin® ZV =
Hoos?zv — Heos' ZO®  Hsin*zo — Hsin* Zv
R’ B R?
. Hoos’zV — Hceos' 20 = Hsin'z® — Hsin® ZV!
_Heos zvHsin’ Vo

.. Dyk-nati defined above = JH cos® zZv — H cos* Z©

Hecos zv Hsiu Vo
R
4 Drk-nati _ 4 H cos zv Hsin Vo
R i
== Bphutalambana.

gin ZO — Hsin® ZV =
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Bhaskara’s proof proceeds  in two stages from first
principles. In the first place when V coincides with Z,
Lambana is seen to be equal to 4 nadis on the horizon and
zero at Z ie. it is zero when H sin Z® = 0 and 4 nadis,
a maximum when Hsin Z® = R. 8o, it is meet that
Lambana should be taken to be proportional to H sin Z®
ie. proportional to natajya. In this context the lambana
termed as Madhyamalambana is entirely along the ecliptio.
It is taken to be in the form of Karpa, because in the
position of @C also it is in the form of a Karna.

Then let the Eecliptic be deflected from the zenith
(deflected = fagea).  Vitribhalagna then being deflected
from the position of Z, occupies the position of V (fig. 92).
So ZV is called Drk-kshepa since the Eecliptic which was
in the form of a Drk-mandala is deflected from that posi-
tion. Also the circle ZV is called Drk-kshepa-mandala
beoause V is deflected along that circle. Now consider
the A whose sides are Hsin ZV, H gos zV and R.
H cos ZV equal to R and as such in the form of a Karpa
corresponds o the Madhyamalambana which is also in the
form of a Karna; when this Vitribha-Sanku assumed the
form H cos ZV, ie. rendered a Koti from its form of &
Karpa, R, the Sphutalambana is also 1endered & Koti in
the form of ®D so that

Madhyamalambana _ Sphutalambana

R . H cos zv
Sphﬁta]ambana. = EE(—)RE—Q Madhyamalambana
‘V X 4Hsinzo

Then Bhiskara says that we could look at. ﬁhis, from
another angle in the words “#R9 IgTerarw WIFq
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In fig. 92, HsinZ® is in the form of a Karpa;
H sin zv is in the form of the corresponding Bhuja. This
triangle formed by these two as sides may be taken to be
similay to the triangle ®DC, both being called parallax
As. This plane triangle ®DC is like the plane triangle
which has for its sides H sin A, Hsin d, where 1and o
are the longitude and declination of a point of the Eeliptic.

In the Tripragnadhikara, we had occasion to deal
with this triangle and there we had R

~ sin®*a—H sin? ) right

H cos o

sion of the point. Similarly R

NHsin®*zo — H sin® Zv
H cos zv
= Hsin VO©. In other words Drk-nati is Hsin Vo
projected into a circle of radius H cos ZV from a circle
of radius R. We have the proportion
Ce _ CD _ Do
Hsinz® ©sinzv ~Hsin?z0 — Hsin® zv
_. Do = Sphutalambana
" ~Hsin"z6 — Hsin® zv

The quantity under the radical in the demominator
is called Drk-nati for the following reasons.

When V coincides with z, Vo is the Drk-mandala-
nata, gb that when V is deflected also, we continue
to view the Drk-nati placed along V©. Since Madhyama-
lambana ©C isin the form of a Karna in the L 0DC,
we perceive it to be in the form of a Karpa even when
V coincides with Z. This Madhyamalambana being equal
to Sphutalambana when V ooincides with z, Sphuta-
lambana is also in the form of a Karpa then. Now in the
position ® DC, Sphutalambana has assumed the position
of a Koti ie. the Sphutalambana which, in the form of a
Karpa, being placed along Drk-mandala natimsa, ie now
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rendered a Koti and is placed along Vo, So the quantity
NHsin®Ze® — Hsin® Zv which is the Kati of the a
formed by H sin Z® and H sin Zv, corresponds to the
Koti of Sphuta-labana ©D. So we cail

gin® Z® — H sin Zv as Drk-nati, in as much as the
Sphutalambana being placed along V© in the form of a
Karpa when V© is Drk-mandala-nata, continues to be
placed along V@ in the deflected position also and
becomes a Koti corresponding to the Koti of the triangle
formed by Hsin Z® and Hsin ZV ie. corresponding to
the quantity vHsin®Ze — Hean®*zv. The Sphuta-
lambana should be construed as being associated with
Drk-mandala-nata which term is now abbreviated to the
term Drk-nati.

At A of fig. 92, the Drk-nati = ~R¥ — H sin® zv
= H cos zV = H cos ZV = Vitribha-lagna-Sanku, Hence
the proportion proceeds in accordance with this Drk-nati.

Verse 6 (latter half) and first half of verse 7.
Alternative method of obtaining parallax in longitude.

H oo/zZV)’ _ (H g?fgf

r vy’
0 —_— ) ————
Rz ) T \TRA >
gives the parallax in longitude expressed in nadis.

Comm. These formulae just constitude another mode
of expressing the parallax in longitude and the equivalence
4
R
Latter half of verse 7. Use of the parallax in

longitude. .

of the formulae with the formula = Drk-nati is evident.

The time of the ending moment of New Moon ie. the
of geocentric eonjunction is to be reotified by this
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parallax in longitude to get the moment of apparent
conjunction by the method of successive approximation.

Comm. In as much as the moment of apparent
conjunction for an observer situated somewhere on the
surface of the Harth precedes or follows the moment of
geocentric conjunction being preponed or belated by the
parallax in longitude, we have got to take this parallax
in longitude into account and compute the moment of
apparent conjunction. This computation has to proceed
according to the method of successive approximation since
the hourly motions of the Sun and the Moon vary as well
as the parallax in longitude. When the Sun is in advance
of V, the Sphutalambana advances the Moon more than
the Sun so that the moment of apparent conjunotion is
past. Hence the correction is negative and vice versa.

Verses 8 and 9. Computation of the parallax in
longitude without an appeal to the method of successive
approximations.

Let Para = %gﬂ cos ZV; {Para ~ Hsin o L}® +

Hoos' oL = K* Hsin™ {]_3_99_3__9 L,?S_Pa'm} =
parallax in longitude,

Ref. fig. 95, E, E, is taken to be what is termed Para

equal o % H cos zv, H cos ZV being the Vitribha-S'anku.

. 4 .
= 1 fnadutuuliinded
SmceRcou d ba written a8 R
4 X 360
60
4 __ Hsin 24
‘moment -H cos Zv has come in' the place of H gin a

H sin 24, since 4 ghatis =

= 24°, 60 ghatis beihg‘equivalenﬁ to 360°,

X Hoeos zv. Imagining for a
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H sin 2 X Hsin 24
R

% H cos zV = Para = the Hsine of the declination of

that point whose longitude is equal to Vitribha-Sanku,

In other words Para is termed as the Vitribha-Sanku-

Rupa-Kranti-Vrttiya-Bhujajyajanita- Krantijya.

pertaining to the formula Hsin § =

Now take By By = Para defined above. Draw oircles
of equal radii with E, and E, as centres. Call (E,) and
(E,) as the Chandra-Kakshamandala and Ravi-Kaksba

Mandala. Para by its formulation as 4—R H cos zv, is equal

to the maximum parallax in longitude for a given
H cos zv ie. for a given position of V with respect to z,
This being so, the parallax in longitude for an arbitrary
position of ® with respect to V will be

PAERSX H;{un (e=v) according to the previous

lation thereof. This form of the formula by its similarity

a

with the formula R H sin m, pertaining to the eccentric-

circle-theory, suggested to Bhaskara that the parallax in
longitude could be derived from the theory of the eccen-
trics or Prati-Vrtta-Bhangi. In fig. 95, it will be noted
that Bi, Ea are not the centre of the Earth and the position
of the observer on the surface of the Harth but such

points as E, E, is made equal to % H cos ZV or -3 H cos zv

of the modern figure % being equal to %, s that E, E,

is of a variable magnitude varying with H cos ZV.

‘Comm. When H cos ZV=R ie. when V coincides
with Z, we have the maximum parallax. What then will
—4 R
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Fig. 95

be had for an arbitrary H cos Zv ? The result is

Egg—sﬁ X Hsin 24 since 4 nadis correspond to 24°,
60 nadis corresponding to 860°. Henoe the result is
H cos zv X 1397 . 3438 . .
5150 . Converting 397 into a continued
1 1 11

fraetion we have 2 4 pRaE i wnt RO of which the con-

vergents ave %, §, 31, 33 and 23 is a very good convergent
preceding a large quotient namely 9. So the result may

be written aslw—%ﬁz—vwhiah is symbolized ag

Now parallax in longitude = L% X ngiu (0 —v)

When H sin ( ® —v) = R, the parallax will be equal to
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Para. This formula by its similarity with the formula
pertaining to the eccentrie theory led Bhaskara to use the
method of eccentric circles to obtain the parallax, It is

indeed ingenious on his part to have conceived the appli-
cability of that method.

Fuarther it is rather curious that 4 nadis of the
maximum parallax should correspond to 24°. This also
led Bhaskara to conceive similarity between the formulae

Hsin g = H sin 2 XRH sin 24° (the formula wused to

obtain the declination @ given the longitude 4 of a point

H cos zv X H sin 24
R

= Para. 8o from an arbitrary H sin 2 equal to Vitribha-

Sanku, Para is derivable as H sin §. In other words Para

is oalled Vitribha-Sanku Riupa-Kranti- Vrttiya Bhujajya-

Janita-Krantijya.

of the Heliptic) and the formula

Now the doubt arises, namely that when the formula

Para X H sin ( ® —v)
R

longitudinal parallax = resembles

a
R
centre, why does Bhaskara suggest that the parallax is
derivable without the application of the method of succes-
sive approximations, by appealing to the method Sighra-
phala, The doubt is here two fold (1) where is the
necessity for the method of successive approximation to
obtain the parallax, though it be called for, to obtain the
moment of conjunotion? (2) why does Bhaskara appeal
to Sighrakarma and not Mandaphala, when the formula
suggests the latter, by the presence of R and there is no
Katall?

the formula = H sin m which pertains to the Equation of

The answer is as follows. In the first place, even in
the modern formula for parallax namely a/d sin z, Z is



the zenith-distance pertaining to the observer and not the
geocentric zenith-distance, which are respectively called
prsthiya and garbhiya natamsas. Also the parallax is the
angle between the geocentric direstion of the Moon and
that ,of the observer. (Vide fig. 91 where parallax =

A
EMA).

In deriving this parallax, we are using the apparent
zenith-distance of the Moon and not the geocentric zenith-
distance of the Moon, In fig, 92 the position of @ corres-
ponds to the geocentric position, whereas D corresponds to
the position of the observer on the surface of the Earth.
So, as we use the apparent zenith-distance as argument to
obtain parallax along the vertical, so we have to use, VD
as the argument to derive the parallax in longitude and not
V o. 8o, the mothod of suceessive approximations is called
for as ©D is first computed from the argument V© and
VD is to be made the argument thereafter. This means
that V© may be construed as Madhyakendra and VD as
Sphutakendra. Now applying this idea to fig. 95, V, E, ©
may be construed as Sphutak&ndra whereas V. E: © may
be construed as Madhyakandra.

From the similarity of the triangles ® NM, and
B LM 2N _ oM . @N:ﬂxLMz |

LM E.M
Para Para
el = ®
R X 0K = X X H sin KE

N\
where E,M is termed the Karpa and KE,®, the Sphuta~
kéndra is made the argument, Thus parallax in longitude

Para X Hsin @ —o
R

(in which case, the method of successive approximation

Pars « H ¢in (KE, 0)

which was originally formulated as

was called for), is now formulated as —2



where that method of successive approximation is
circumvented and where by the presence of K in the place
of R, analogy is with the eccentric method of formulation
of Sighraphala and not that of Mandaphala, Also

K: = EM? = E,I* + ML* = (E;gK—LK): + 0K* =
(B,E—Mo)*+ oK* = (H cos K]/i‘;@ ~Para)* +

H sin® Kf}: e.

But if L be the lagna of the moment Lo =90 — Vo

N N\
go that H cos KE,® = Hsin ©L and Hsin KE;0 =
Heos ©L .. K*=(H sin © L—Para)’ + H cos® ©Las
formulated in the verse.

Fig. 95 is in the plane of the Holiptic. The parallax
in the vertical circle is projected on to the plane of the

Ecliptic by taking % H cos ZV as the Para, and deriving
the parallax in longitude from this Para.

Now, the doubt arises as to why the S'ighroccha is
not taken to coincide with the Vifribha but is taken as
removed 180° therefrom.

Verse 10, Hsin zv (of fig. 92) is ocalled the Drk-
kshepa of the Sun, which is considered to be north in case
the northern declination of the Vitribha is greater than
¢ the latitude, otherwise south.

Comm. Let in fig. 96, AV be the Eoliptic whereof
A is the ascendant or Lagna and V the Vitribhalagna,
Let EQR be the celestial Equator. Let § be the decli-
nation of the Vitribhalagna. Then if 3> ¢. then ZV, the
arc of the the Drk-ksepa, (H sin ZV being defined as the
Drk-ksepa) as well as H sin ZV are considered to be north.
Thus in flg. 96, it is north whereas in fig. 97 it is south,
(In fig. 97, r is shown outside the celestial sphere, signi-



430

fying that r is in the western hemisphere and is brought
into view for clarity).

, *
v
/\

R

Fig. 96 Fig. 97

Verse 11 and first half of verse 12. Then the sum
of zv and the latitude of V assuming V to be the Moon,
or the difference of the above two, as the case may be,
according as both of them are north or of opposite
directions, gives the arc whose Hsine is the Drk-ksepa
of the Moon, The Drk-kgepas of the Sun and the Moon
multiplied respectively by Fsth of their daily motions and
divided by the radius R (equal to 3438’) are the parallaxes
of the Sun and the Moon in latitude. The sum or
difference of these parallaxes according as they are of
opposite or the same direction, is the true parallax in
latitude in the context of a solar eclipse,

Comm. The true parallax in latitude sought above is
the relative parallax of the Sun and the Moon in latitude.
Suppose in fig. 92, VB is the parallax in latitude pertain-
ing o the Sun and VB’ that pertaining to the Moon; then
BB’ is the relative parallax, the difference being taken in
this case because both are of the same direction.

Parallax in latitude namely CD in fig. 92, we saw
4H

R gin zv, In other words

equal to VB whioh is equal to
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the parallax in latitude either of the Sun or the Moon is
equal to%H sin of the zenith-distance of the respective
Vitribhalagna wherever the Sun or the Moon be situated
in their orbits namely the Ecliptic or the Vimandala, Let
Hsin zv be the Drk-ksepa of the Sun, V being the
Vitribhalagna pertaining to the Sun and let H sin Zv
be the Drk-ksepa of the Moon where » is the Vitribha-
lagna of the Moon. (Ref. figures 98 and 99) Let K’ be
the pole of the Vimandala and vy, the latitude of ». Since
vand V are in the proximo, the latitude of v may be
taken to be very nearly equal to the latitude of V so that
ZV *+ latitude of V is very nearly equal to Zv. In fig. 98,
ZV—Iatitude of V is very nearly equal to Zv because both
ZV and latitude of V are of the same direction. In fig. 99
ZV+-latitude of V is very namely equal to Zv because both
arc of opposite direction. Thus Zv = zv + latitude of V
approximately and H sin Zv and H sin Zv are the Drk-
kgepas of the Bun and the Moon respectively. Having
got these Drk-ksepas %X Drk-kgepa gives the nati in
each case ie. the parallax in latibude and the sum or
difference of these natis as mentioned in the beginning of
the commentary of this verse gives the relative parallax
of the Moon with respect to the Sun which is called the
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true parallax in latitude. This true parallax in latitude
increases or decreases the latitude of the Moon at the
moment of conjunction as is going to be mentioned in the
latter half of verse 14.

In deriving the parallax in latitude from the respe-
otive Drk-ksepas, instead of using the formula,%Hsine

(Drk-ksepa) which is an expression in time, it is sought
to express the same in aro because the latitude of the Moon
is expressed in arc and we have to take the sum or differ-
ence of the latitude and the parallax in latitude to obtain
the apparent latitude of the Moon at the moment of
oonjunction. In the case of the parallax in longitude we
sought to express the same in time because the moment
of apparent conjunction was sought therefrom.

Latter half of verse 12 and first half of werse 13.
An approximate method of obtaining the relative parallax
in latitude of the Moon with respect to the Sun.

The Hsine of the zenith-distance of the nonagesimal
pertaining to the Moon or what is called the Moon’s
Drk-kgepa multiplied by 2 and divided by 141, gives the
relative parallax in latitude of the Moon with respeet to
the Sun; or working with the smaller table of Hsines
(where R is taken o be 120) the Moon’s Drk-ksepa being
multiplied by 2 and divided by 5 and the result being
increased by &5th of itself gives approximately the relative
parallax in latitude.

Comm. Herein, the Vitribha or the nonagesimal of
the Sun is taken to concide with that of the Moon. In
other words the Drk-ksepas (the Hsines of the zenith-
distances of the nonagesimals, of both the Sun and the
Moon are taken to be identical. Then using the following
proportion ““If by a Drk-ksepa equal to R, the relative
parallax in latitude is equal 0 #sth of the difference of the
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daily motions namely 48-46/, what will if be for an
arbitrary Drk-ksepa 2 We ha.ve

continued fraction, this will be equal o
11111 of which a very approximate convergent
is 31 as taken by Bhaskara.

If the radius be taken to be 120, the coefficient of D

will be 483 _ 195 _ 13 =1 11_2
120 40 32 24246 b
approximately.

Latter half of verse 18 and first half of wverse 14.
An easy methodito compute the parallax in longitude and
latitude.

Taking the Drk-gepa of the Moon as well as the Sun
to be the Hsine of the meridian zenith-distance of the
Vitribha and the H cosine of its meridian zenith-distance
as the Vitribha-S'anku, the parallaxes in latitude and
longitude could be got from them respeotively.

Comm. Parallaz in longitude is computed from the
Vitribha-Sanku, whereas parallax in latitude is computed
from the Drk-ksepa or the Hsine of the zenith-distance
of the Vitribha. Thuas for both the purpose the Vitribha's
position is important, whose zenith-distance and altitude
give respeotively the parallax in latitude and longitude.
Since in practice it is a little cumbrous to obtain the
Vitribha's altitude and zenith-distance, an approximate
procedure is suggested. Obtaining the declination or the
Sphuta-kranti of the Moon taking him to coincide with
the Vitribha by the metbhod described in verse 3 of the
Graha-cchayadhikars, and using the formula Z4-§=¢, the
meridian zenith-distance of the Vitribha can be got. Tbis
‘may be assumed o be the Drk-gepa approximately. The

66 '
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complement of the meridian-zenithsdistance may be
assumed to be the Vitribha-Sanku approximately. Then
the parallaxes in latitude and longitude could be computed
respectively from the two as described before.

The following figure gives & particular nomenoclature
that was in the mind of Kamaldkars, the author of
Siddhantatattvaviveka,

Fig. 99-A

Latter half of eerse 14. The purpose of obtaining
the parallax in latitude.
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The apparent latitude of the Moon is equal to the
algebraic sum of his geocentric latitude and the parallax
in latitude. From this apparent latitude are to be calou-
lated the Sthiti-khanda and Marda-khanda of the solar
eclipse (by the method described in the chapter on- lunar
eclipse, taking the eclipsing body or grahaka o be the
Moon and the eclipsed or Grihya to be the Sun),

Comm. The geocentric parallax of the Moon has a
double effect on the occurence of a solar eclipse as men-
tioned before, If the parallax be resolved along the
Eoliptic and along a secondary to the Ecliptic, we have
respectively the parallax in longitude and that in latitude.
The parallax in longitude makes the apparent moment of
conjunoction at a given place, differ from the moment of
the geocentric conjunction, whereas the parallax in latitude
makes the magnitude of apparent latitude of the Moon at
the place of observation differ from that of the geocentrio.
The apparent latitude is equal o the sum or difference
of the geocentric latitude and the parallax in latitude.
Having got the apparent latitude, the computation of the
Sthiti and Marda-khandas could be done according to the
‘'method described in the chapter on lunar eolipse.

For a point C on the surface of the Earth, a eolar
eclipse occurs if the latitude of the Moon be less than MD
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(vide fig. 100) where M is the centre of the Moon and MD
the latitude of the Moon at the point of first contact

' Ve
MD =MB + BD = m + BED where m is the semi-
diameter of the Moon’s dise. But

A N N N N
BED = BEA + AES = CBE—CAE +AES=P —p+s
where P and p are the parallazes of the Moon and the Sun
and s the angular semi-diameter of the Sua. Thus in
order that a solar eclipse may be possible for some point
of the Earth, the latitude of the Moon at the moment of
conjunction must be less than P+s+m—1p
= 57/ + 16/ + 15! = 89 approximately. The lesser the
northern latitude of the Moon at the moment of conjun-
otion, more places situated on the surface of the Harth
between C and F will have solar eclipse where F is the
sub-solar point ie. the point of the Earth which has the
Sun in the zenith at the time of conjunction, Similarly,
if the southern latitude of the Moon is less than 89/ af the
moment of conjunction the places situated on the Harth
between G and F' will have solar eclipse. In partiocular
the sub-solar point F will have solar eclipse if the latitude
of the Moon at the moment of conjunction is less than
HDie. less than s+m ie. 33’ approximately. The sub-
solar point will have no parallax, so that the terms P and p
in P+s+m—p vanish. For the other points ie. points
between' F and C or G parallax will be there and the
latitude may be greater than s -4 m but less than

’-—p to have an eclipse. A labitude of 33/ corres-
33 X156 _
, 70 14
with respect to & node. Thus if at the moment of conjun-
ction, the latitude of the Moon be less than 7°, even the
suB‘-golar point must have an eclipse.

ponds to a distance of = 7v° of the Sun

Véi"sas,.lﬁ, 16, 17. To find ”Spa,rs'a,kila., Moksak3ala,
Sammilanakila and Unmilanakila,
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First compute the time called Sthiti-khanda (as
mentioned in the chapter on lunar eclipses). The ending
moment of local Amizvasya or what is called the moment
of local conjunction is known as the Madhya-Grahakila
or the moment of the middle of the eclipse. Subtrast the
Sthiti-khands from the computed time of Geocentric
conjunction ; the result will be the approximate Sparsa-
kala. This has to be rectified for parallax in longitude
as well as the approximate Madhyagrahakila of geocentric
conjunction to obtain the local Sparstakila and the local
Madhyagrahakala ; Similarly the Moksakala, the Sammi-
lana and the Un-milanakalas are to be rectified for
parallax in longitude. But while effecting this correction
for the parallax in longitude, the Moon’s latitude also
differs for the corrected time which in turn effects the
durations of Sthiti-khanda, Moksa-khanda etec. Correcting
the first computed Sthiti-khanda. Moksa-khanda eto. for
this variation in the latitude, and subfracting the Sthiti-
khanda from the time of Madhya-graha, we have a better
approximation for the Spargakila. In as much as parallax
in longitude, that in latitude, and the Moon’s latitude vary
from time to time, and the times of Sparsa, Madhyagraha
ete. are effected by them, the process of computation
proceeds by the method of successive approxzimation.
Subtracting the rectified Marda-khanda from the rectified
Madhyagrahakala, we have the true Sammilanakila ;
similarly adding the former to the latter we have the true
Un-milanakila.

. If, as mentioned before in verse 9, the parallax in
longitude is found without using the method of successive
approximation, the Sparga-kila and the Moksa-kala are
had at once. But the latitude of the Moon and the parallax
in latitude are to be computed using the then longitudes
of the Moon and the non-agesimal.

Comm. Clear.
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Verses 18, 19. To obtain the true values of the Bhuja
and the Istakila.

The remaining work proceeds on the lines indicated
in the chapter on ‘ lunar eclipses ’ (ie. the computation of
the Bimbavalana, Bhuja, Koti and the like is to be done
as indicated there). The Bhuja will be rectified by multi-
plying it by the Sthiti-khanda obtained by adopting the
latitude of the Moon effected by parallax in latitude and
divided by the Sthiti khanda rectified for parallax in
longitude. Similarly given the grasa ie. the magnitude
of the eclipse, the result found before by verse 15 in the
chapter of lunar eclipses, is to be multiplied by the Sthiti-
khanda rectified for parallax in longitude and divided by
that obtained adopting the latitude of the Moon effected
by parallax in latitude, and the result so obtained being
subtracted from the Sthiti-khanda, we get the Ista-kala.

Comm. Refer fig, 73. The Sthitikhanda is the time
taken by the centre of the eclipsing body to go from C, to
N relative to the eclipsed body, ie. keeping the eclipsed
body fizred. The Bhuja at any intermediate point of time
between the moment of first contact and the ‘middle of
the eclipse is NC of fig. 78; and the Igtakila is the $ime
elapsed between the moment of first contact to the
moment when the centre of the eclipsing body ocoupies
any arbitrary position C. In the context of the lunar
eclipse, the Bhuja was calculated by the formula (T—I)
(m:—s.) where T is the Sthiti-khanda, I = Igtakala, m,
and s, the motions of the Moon and the Sun on the day
concerned. This Bhuja may be also expressed in the form
~N(R+r—g)*—B® where R, 7 are the radii of the eclipsing
and eclipsed bodies, of the grasa and A the latitude of the
Moon at the middle of the eclipse. Griven the grasa @&,
the formula to find I the Istakila, is

9'-8
m,—$,
solar eclipse, B, the latitude of the Moon is effected by the

In the present context of the
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parallax in latitude, so that it is a variable. We are to
make a correction for this variability, both in the com-
putation of Sthiti-kbanda, Bhuja and Ista-kala. The

formula for the Sthiti-khanda is J.R_‘tﬂ_‘_ﬁ where 8
“81

is the latitude of the Moon at the moment of conjunction.
The value of MN at the moment of conjunction will not
be equal to its value at any intermediate point because
parallax in latitude differs from position to position of the
Moon. In other words 3 is variable. The formulae given
for the rectification of the Bhuja B or the Igtakala I are
B=2XTanar=m_ YBtr—gP—f T,
T m,—8,

T/ is the Sthiti-khanda rectified for the variability of 8
B’ is the Bhuja rectified for the same whereas T and B are
the values of the Sthiti-kbanda and Bhuja computed
taking the effect of parallax in longitude above,

The effeot of parallax in longitude is to prepone or
postpone the moment of first contact as well as that of
conjunction. The verse under commentary uses two terms
Sphuta-Sthiti-khanda and  Sphuteshuja-Sthiti-khanda.
The former is the Sthiti-khanda rectified for parallax in
longitude whereas the latter is that rectified for parallax
in latitude ie. by adopting 3’ instead of A in the formula

~ B-l-—r"——@f where 3/ = B = effect of parallax in latitude.

’m:*—&

Suppose on acocount of parallax in longitude the
moment of first contact ¢ becomes #,+dt, and let the
moment of conjunction ¢, become #+df.  Then the
Sthitikhanda unrectified for parallax in longitude will
be (t;—t:) whereas that rectified for parallax will be (£, —¢.)
+ (dt;—t:). This rectified Sthitikhanda is ocalled
Sphuta-Sthiti-khanda. Now the verse under commentary
gives a procedure o rectify the Bhuja, and Igtakala in the
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wake of B being effected by parallax in longitude.

formula for Bhuja is Mi wherein all q_uanintleq
My—81

exceps B may be taken to be constant. Su.ppoge B effected

by parallax be comes B'. If B/ > 3, Bbuja will decrease ;

NRFr)—3
mM1—$1
decreases if B/ > :6 Hence if T' be the new value of T

the Sthiti-khanda, T’ < T. In other words when 3/ >
B'’<Band T/ < . Also if B’ < B, both B’ and T/ W1ll
be greater than B and T respectively. Hence as a rough
measure B and T are taken to vary together positively or
negatively and as such proportionally. Though both
inereagse or both decrease together, strictly speaking the
concept of preportionality is there; but roughly speaking
they are taken to vary proportionally which means

, _BXT
B = 7

also the Sthiti-khanda whoss formula is

The fact that proportionality is not there

could be seen in two ways. B = (T—1I)(m.—s.) (1) with
usual notation so that taking B and T to vary on account
of the variation in B, B = 3T (m:—s.), I not varying so
that B+ 8B = B/ = (T 4+ 3T) (mi—s,) — I (m1 —s:) =
™ (ml "'81) —1I (m: “31) = (T"“I) (m:—sx) (2).

Dividing (1) by (2) B/B = E[T_I—I which will be

approximately equal to T/T/ provided [ is very small
compared with T. Assuming so, B/B, could be taken to

be equal to T/T, which means B’ = B >(]§ iy a8 menhiox;ed

in the verse. Or again, considering the formulae for B
and T and differentiating them with respect to B and
getting B’ and T/, we shall have the following working.

--g) /8 80 that 2 BB =
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ordB = .~ —B38 ; similarly T? = M 8o that

B (m,—s,) my—s,
aT 3T = 988880 that T =, @ﬂ.
L' (m, -s,)
B' = B+3B = B—_ B8, amo
B (my—s,)
T im,—a)

T——-M Since ’gﬁtﬂifg
T

B B

T

Regarding the finding of Istakala when g the grasa
is given, we have the formula

(Rl \8_ 8
T -1 = B__ J(R-{-r—g) P 50 that putting T —~I=1¢

My -8, m—

/ 8 _p8

Btr—g -§ .. As g inoreases ¢ deoresses so that
my —81

T—¢ inoreases ie. I inoreases. Whereas as g increages T
decreases, This means in & way that as T decreases. I
increases so that I is taken to be inversely proportional

IXT
TI

to T ie, I’ is taken to be a8 given,

Here also, it could be seen that the inverse propor-
tionality is not strictly there; for 8 increasing both ¢ and
T decrease so that T —t¢ ie. I will inorease only if the
decrease in £ is greater that in T. But ¢*



	00000001
	00000352
	00000353
	00000354
	00000355
	00000356
	00000357
	00000358
	00000359
	00000360
	00000361
	00000362
	00000363
	00000364
	00000365
	00000366
	00000367
	00000368
	00000369
	00000370
	00000371
	00000372
	00000373
	00000374
	00000375
	00000376
	00000377
	00000378
	00000379
	00000380
	00000381
	00000382
	00000383
	00000384
	00000385
	00000386
	00000387
	00000388
	00000389
	00000390
	00000391
	00000392
	00000393
	00000394
	00000395
	00000396
	00000397
	00000398
	00000399
	00000400
	00000401
	00000402
	00000403
	00000404
	00000405
	00000406
	00000407
	00000408
	00000409
	00000410
	00000411
	00000412
	00000413
	00000414
	00000415
	00000416
	00000417
	00000418
	00000419
	00000420
	00000421
	00000422
	00000423
	00000424
	00000425
	00000426
	00000427
	00000428
	00000429
	00000430
	00000431
	00000432
	00000433
	00000434
	00000435
	00000436
	00000437
	00000438
	00000439
	00000440
	00000441
	00000442
	00000443
	00000444
	00000445
	00000446
	00000447
	00000448
	00000449
	00000450
	00000451
	00000452
	00000453
	00000454
	00000455
	00000456
	00000457
	00000458
	00000459
	00000460
	00000461
	00000462
	00000463
	00000464
	00000465
	00000466
	00000467
	00000468

